<span>density = mass / volume
given the quotient , we have density and mass, volume can be easily calculated as:
volume = mass / p =15.5 g / 0.789 g/cm^3
=~ 20 cm^3 (dimension ally constant)</span>
Answer:
71.5g
Explanation:
The reaction equation is given as:
C + O₂ → CO₂
Mass of C = 42g
Mass of O₂ = 52g
Unknown:
Mass of CO₂ produced = ?
Solution
Now to solve this problem, we have to find limiting reactant which is the one given in short supply in this reaction.
The extent of the reaction is controlled by this reactant.
Find the number of moles of the given species;
Number of moles =
Number of moles of C =
= 3.5mol
Number of moles of O₂ =
= 1.63mol
Now;
From the balanced reaction equation;
1 mole of C reacted with 1 mole of O₂
We see that C is in excess and O₂ is the limiting reactant.
1 mole of O₂ will produce 1 mole of CO₂
So; 1.63mole of O₂ will produce 1.63 mole of CO₂
Mass of CO₂ = number of moles x molar mass
Molar mass of CO₂ = 44g/mol
Mass of CO₂ = 1.63 x 44 = 71.5g
Answer:
55.3 × 10²³ molecules
Explanation:
Given data:
Number of moles of C₁₁H₁₂O₂₂ = 9.18 mol
Number of molecules = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
For given data:
9.18 mol × 6.022 × 10²³ molecules /1 mol
55.3 × 10²³ molecules
Answer:
PCl3
Explanation:
The molecular formular of a compound shows the exact number of atoms of elements present in the compound. In this illustration, there is one atom of P and 3 atoms of Cl.
The formular is given as; PCl3