Answer:1
Step-by-step explanation:
Skip work! get some booty! don't care about skool
Answer:
A(max) = (9/2)*L² ft²
Dimensions:
x = 3*L feet
y = (3/2)*L ft
Step-by-step explanation:
Let call "x" and " y " sides of the rectangle. The side x is parallel to the wall of the house then
Area of the rectangle is
A(r) = x*y
And total length of fence available is 6*L f , and we will use the wall as one x side then, perimeter of the rectangle which is 2x + 2y becomes x + 2*y
Then
6*L = x + 2* y ⇒ y = ( 6*L - x ) /2
And the area as function of x is
A(x) = x* ( 6*L - x )/2
A(x) = ( 6*L*x - x² ) /2
Taking derivatives on both sides of the equation we get:
A´(x) = 1/2 ( 6*L - 2*x )
A´(x) = 0 ⇒ 1/2( 6*L - 2*x ) = 0
6*L - 2*x = 0
-2*x = - 6*L
x = 3*L feet
And
y = ( 6*L - x ) /2 ⇒ y = ( 6*L - 3*L )/ 2
y = ( 3/2)*L feet
And area maximum is:
A(max) = 3*L * 3/2*L
A(max) = (9/2)*L² f²
The value of x is 5. A good tool to use for things like this is "Desmos Graphing Calculator. It is free and there is no wait for an answer.
12) Im not sure about this one
13) c
14)a