Answer:
a) common ion effect
b) solubility
c) saturated solution
d) solubility product constant
e) molar solubility
Explanation:
When a substance, say BA2 is dissolved in a solution and another substance CA2 is dissolved in the same solution. The solubility of BA2 is decreased due to the addition of CA2. This is known as common ion effect.
The mass of a substance that will dissolve in a given Volume of solvent is known as it's solubility.
The molar solubility is the amount of moles of solvent that dissolves in 1 dm^3 of solvent.
A solution that contains just as much solute as it can normally hold at a given temperature is known as a saturated solution.
Lastly, the product of molar solubilites raised to the power of the molar coefficient is know as the solubility product constant.
Answer:
0.99 kg O₂
1.9 kg SO₂
Explanation:
Let's consider the reaction between sulfur and oxygen to form sulfur dioxide.
S + O₂ → SO₂
The mass ratio of S to O₂ is 32.07:32.00. The mass of oxygen required to react with 1 kg of sulfur is:
1 kg S × (32.00 kg O₂/32.07 kg S) = 0.998 kg O₂
The mass ratio of S to SO₂ is 32.07:64.07. The mass of sulfur dioxide formed when 1 kg of sulfur is burned is:
1 kg S × (64.07 kg SO₂/32.07 kg S) = 1.99 kg SO₂
FeS + H₂O → FeO + H₂S
Explanation:
Iron Sulfide = FeS
Water = H₂O
FeS + H₂O → FeO + H₂S
To balance this equation, we can use a mathematical method. This involves solving simple algebraic equations
aFeS + bH₂O → cFeO + dH₂S
a,b,c and d are the coefficients needed to balance up the equation:
Conserving Fe: a = c
S: a = d
H: 2b = 2d
O: b = c
let a = 1, c= 1, b = 1 d = 1
The balanced equation is: FeS + H₂O → FeO + H₂S
learn more:
Balanced equation brainly.com/question/2612756
#learnwithBrainly
Answer:
they could collide 241.66 molec / in² by increasing the volume to 40.2L
Explanation:
ideal gas:
<u>Boyle Law</u>: at constant temperature the pressure of a gas varies inversely with the volume
- V1 * P1 = V2 * P2
- P = F / A
∴ V1 = 6.70 L;
∴ P1 = 1450 molec / in²
∴ V2 = 40.2 L
⇒ P2 = (( 6.70 L ) * ( 1450 molec/in²)) / 40.2 L
⇒ P2 = 241.66 molec/in²