The reaction, 2 C4H10 (g) + 13 O2 (g) = 8 CO2 (g) + 5 H2O (g), is the combustion of butane. A combustion reaction involves the reaction of a hydrocarbon with oxygen producing carbon dioxide and water. This reaction is exothermic which means it releases energy in the form of heat. Therefore, as the reaction proceeds,a heat energy is being given off by the reaction. This happens because the total kinetic energy of the reactants is greater than the total kinetic energy of the products. So, the excess energy should be given off somewhere which in this case is released as heat.
the amount of heat produced from the combustion of 24.3 g benzene (c6h6) is ΔH = -976.5 kJ
There are two moles of benzene involved in the process (C6H6). Since the heat of this reaction is -6278 kJ, the burning of 2 moles of benzene will result in a heat loss of 6278 kJ. This reaction is exothermic.
Enthalpy, or the value of H, is a unit of measurement for heat that relies on the amount of matter present (number of moles).
Thus, 24.3 g of benzene contains:
n = mass/molar mass, where n = 24.3/78.11, and n = 0.311 moles.
2 moles = 6278 kJ
0.311 moles =x
By the straightforward direct three rule:
2x = -1953.08 x = -976.5 kJ
Learn more about combustion here-
brainly.com/question/15117038
#SPJ4
Answer:
a. A beta particle has a negative charge. d. A beta particle is a high-energy electron.
Explanation:
Identify the correct descriptions of beta particles.
a. A beta particle has a negative charge. YES. A beta particle is originated in the following nuclear reaction: ¹₀n ⇒ ¹₁H + ⁰₋₁e (beta particle.)
b. A beta particle contains neutrons. NO. It is a electron originated in the nucleus.
c. A beta particle is less massive than a gamma ray. NO. Gamma rays don't have mass while a beta particle has a mass which is half of one thousandth of the mass of a proton.
d. A beta particle is a high-energy electron. YES. Beta particles are nuclear originated hig-energy electrons.
Answer:
Rn
Explanation:
Rn is the symbol for radon with the atomic number of 86