Carbonated drinks have the air under pressure so that carbon bubbles are forced into the drink, keeping it carbonated. So when you open a can, the air under pressure in the can comes out of the can at a high speed, making a "whooshing" sound. The gas law that applies to this concept is the Boyle's Law (PV=k or P1V1=P2V2).
Answer is: 4.45 grams of methane gas <span>need to be combusted</span>.
Balanced chemical reaction: CH₄ + 2O₂ → CO₂ + 2H₂O.
Ideal gas law: p·V =
n·R·T.<span>
p = 1.1 atm.
T = 301 K.
V(H</span>₂O) <span>= 12.5 L.
R = 0,08206 L·atm/mol·K.
</span>n(H₂O) = <span>1.1 atm ·
12.5 L ÷ 0,08206 L·atm/mol·K · 301 K.
</span>n(H₂O) = 0.556 mol.
From chemical reaction: n(H₂O) : n(CH₄) = 2 : 1.
n(CH₄) = 0.556 mol ÷ 2 = 0.278 mol.
m(CH₄) = 0.278 mol · 16 g/mol.
m(CH₄) = 4.448 g.
Answer:
Isotopes
Explanation:
Isotopes are atoms of the same element that contain an identical number of protons, but a different number of neutrons. Despite having different numbers of neutrons, isotopes of the same element have very similar physical properties.
Answer is: 79.8 grams of copper(II) sulfate.
N(CuSO₄) = 3.01·10²³; number of molecules.
n(CuSO₄) = N(CuSO₄) ÷ Na.
n(CuSO₄) = 3.01·10²³ ÷ 6.02·10²³ 1/mol.
n(CuSO₄) = 0.5 mol; amount of substance.
m(CuSO₄) = n(CuSO₄) · M(CuSO₄).
m(CuSO₄) = 0.5 mol · 159.6 g/mol.
m(CuSO₄) = 79.8 g; mass of substance.
M - molar mass.