Answer:8 x 365=2920
Step-by-step explanation:
First, you add 5 + 3 which equals 8. Then there is 365 days in a year so you would multiply 8 times 365 which equals 2920.
Pretty sure this is right, hope it helps.
Answer: The answers is alternate interior angles.
Step-by-step explanation: First of all, the questions marks given in the figure are renamed in the attached figure as (a), (b), (c) and (d).
For (a): Since AC is parallel to A'C' and A'D is a transversal for these two parallel lines, so, ∠CDB' = ∠B'A'C', because these are alternate interior angles.
For (b): Since BC is parallel to B'C' and A'B' is a transversal, so ∠BEB' = ∠A'B'C', because these are alternate interior angles.
For (c): Since AB is parallel to A'B' and AD is a transversal, so ∠BAC = ∠CDB', because these are alternate interior angles.
For (d): Since AB is parallel to A'B' and BE is a transversal, so ∠ABC = ∠BEB', because these are alternate interior angles.
Thus, all the questions marks are the reasons that the given angles are equal because they are alternate interior angles.
Graph 1: Domain = 2 <= x < 12
Graph 1: Range = {2,4}
Graph 2: Domain = 3 <= x <= 10
Graph 2: Range = -6 <= y <= 4
Graph 3: Domain = 4 < x < 11
Graph 4: Range = -6 <= y < 2
Answer:
You can use either of the following to find "a":
- Pythagorean theorem
- Law of Cosines
Step-by-step explanation:
It looks like you have an isosceles trapezoid with one base 12.6 ft and a height of 15 ft.
I find it reasonably convenient to find the length of x using the sine of the 70° angle:
x = (15 ft)/sin(70°)
x ≈ 15.96 ft
That is not what you asked, but this value is sufficiently different from what is marked on your diagram, that I thought it might be helpful.
__
Consider the diagram below. The relation between DE and AE can be written as ...
DE/AE = tan(70°)
AE = DE/tan(70°) = DE·tan(20°)
AE = 15·tan(20°) ≈ 5.459554
Then the length EC is ...
EC = AC - AE
EC = 6.3 - DE·tan(20°) ≈ 0.840446
Now, we can find DC using the Pythagorean theorem:
DC² = DE² + EC²
DC = √(15² +0.840446²) ≈ 15.023527
a ≈ 15.02 ft
_____
You can also make use of the Law of Cosines and the lengths x=AD and AC to find "a". (Do not round intermediate values from calculations.)
DC² = AD² + AC² - 2·AD·AC·cos(A)
a² = x² +6.3² -2·6.3x·cos(70°) ≈ 225.70635
a = √225.70635 ≈ 15.0235 . . . feet
Answer:
do 365+365
Step-by-step explanation: