The question is incomplete. The complete question is:
The half-life for the decay of carbon-14 is 5.73x10^3 years. Suppose the activity due to the radioactive decay of the carbon-14 in a tiny sample of an artifact made of woodfrom an archeological dig is measured to be 2.8x10^3 Bq. The activity in a similiar-sized sample of fresh wood is measured to be 3.0x10^3 Bq. Calculate the age of the artifact. Round your answer to 2 significant digits.
Answer:
570 years
Explanation:
The activity of the fresh sample is taken as the initial activity of the wood sample while the activity measured at a time t is the present activity of the wood artifact. The time taken for the wood to attain its current activity can be calculated from the formula shown in the image attached. The activity at a time t must always be less than the activity of a fresh wood sample. Detailed solution is found in the image attached.
Answer:
HCN, weak acid
H⁺, Br⁻, strong acid
Explanation:
Hydrocyanic acid is a weak acid, according to the following equation.
HCN(aq) ⇄ H⁺(aq) + CN⁻(aq)
Thus, it should be written in the undissociated form (HCN).
Hydrobromic acid is a strong acid, according to the following equation.
HBr(aq) ⇒ H⁺(aq) + Br⁻(aq)
Thus, it should be written in the ionic form (H⁺, Br⁻).
<span>1.00 atm of each gas, in what direction will the system shift to reach equilibrium</span>
Answer:
Element 1
Explanation:
The ionization energy is defined as the energy required to remove electrons from the atoms.
We know that the nucleus of the atom attracts the electrons, thus, bound these electrons to the atom.
This means that as the radius decreases, the force of attraction between the nucleus and the electron will increase, therefore, the energy required to remove the electron would increase (and vice-versa).
Based on the above, the atom with the smallest radius would be the atom with the largest first ionization energy.
Hope this help :)
Answer:
98.8
Explanation:
CsF + XeF6 --> CsXeF7
37.8g ................. ?g
37.8g CsF x (1 mol CsF / 151.9g CsF) x (1 mol CsXeF7 / 1 mol CsF) x (397.2g CsXeF7 / 1 mol CsXeF7) = 98.8g CsXeF7 .......... to three significant digits