I think it is b because probability of 2 is 1/6 then probability of 4 is 1/6. If you times them together 1/6x1/6 it will equal 1/36 so b
Answer:
0.0476
Step-by-step explanation:
4/84=0.0476
F(x)= 2x²+4x-6 and g(x)=2x-2, find each function
1. (f/g) (x) = f(x)÷g(x) = (2x²+4x-6)÷(2x-2)
First factor both top and bottom:
(2x-2)(x+3)÷(2x-2) = x+3
2. f(a + 2) = plug (a+2) in anywhere there is an x in f(x)=2x²+4x-6 -->
2(a+2)^2 +4(a+2)-6 = 2(a^2+4a+4)+4a+8-6, now distribute:
2a^2+8a+8+4a+2, combine like terms
2a^2+12a+10
3. g(a/2) = plug (a/2) in anywhere there's an x in g(x)=2x-2:
2(a/2)-2 = a-2
Extraemos los datos del problema:
- Capital Inicial → C₀ = S/.25000
- Interés bimestral → i = 8 % = 0.08
- Periodos → n = 3
<h2 /><h2>Bimestre 1:</h2>
Capital Inicial Bimestre → C = S/.25000
Tasa de interés bimestral:
I = C×i
I = S/.25000 × 0.08
I = S/.2000
Monto final:
M = C + I
M = S/.25000 + S/.2000
M = S/.27000
Variación Porcentual:
% = (M - C₀) / C₀
% = ( 27000 - 25000) / 25000
% = 8
<h2>Bimestre 2:</h2>
Capital Inicial Bimestre → C = S/.27000
Tasa de interés bimestral:
I = C×i
I = S/.27000 × 0.08
I = S/.2160
Monto final:
M = C + I
M = S/.27000 + S/.2160
M = S/.29160
Variación Porcentual:
% = (M - C₀) / C₀
% = ( 29160 - 25000) / 25000
% = 16.64
<h2>Bimestre 3:</h2>
Capital Inicial Bimestre → C = S/.29160
Tasa de interés bimestral:
I = C×i
I = S/.29160 × 0.08
I = S/.2332.8
Monto final:
M = C + I
M = S/.29160 + S/.2332.8
M = S/ 31492.8
Variación Porcentual:
% = (M - C₀) / C₀
% = ( 31492.8 - 25000) / 25000
% = 25.97