Ms. Garcia's science students are studying scale models. For her science project, Sarah has decided to make a scale model of the
solar system. She is using the model you see here as inspiration. She plans to use this as her starting point and add the remaining planets in the correct orbits around the Sun. Sarah conducted some research to help her with the diameters of the planets and Sun in her model and found the table you see above. If Sarah uses a ball for Earth that is 4" in diameter, how much bigger must the Sun be in her model? A) 10 times bigger
The answer is the option B: <span>B) 109 times bigger. The explanation of this exercise is shown below: By the information given in the table attached, the diameter of the Sun is 109 if the diameter of the Earth is 1. Therefore, the Sun is 109 times bigger than the Earth. Then, if </span><span>Sarah uses a ball for Earth that is 4" in diameter,</span> the diameter of the Sun must be 109 times bigger: D=4"x109 D=436".
So we know 5% is 1/20 out of 100 (20x5=100) so then we need to set up the equation to find how much 5% of 15 is. Which is .75 cents. So we then add the 75 cents to the already $15 shipping fee to get an answer of 15 dollars and seventy five cents.