Answer:
![\frac{x + 2}{3}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%20%2B%202%7D%7B3%7D%20)
Step-by-step explanation:
Replace y with f(x).
![y = 3x - 2](https://tex.z-dn.net/?f=y%20%3D%203x%20-%202)
Swap x and y and solve for y
![x = 3y - 2](https://tex.z-dn.net/?f=x%20%3D%203y%20-%202)
![x + 2 = 3y](https://tex.z-dn.net/?f=x%20%2B%202%20%3D%203y)
![\frac{x + 2}{3} = y](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%20%2B%202%7D%7B3%7D%20%20%3D%20y)
Answer:
A trapezoid has one pair of parallel sides and a parallelogram has two pairs of parallel sides. So a parallelograms are also trapezoids.
24 square feet is the answer
Here are your points (-9,-8), (-6,-2), (-2,-6)
0° 42' 48.6".
Conversion: d = int(.7135°) = 0°m = int((.7135° - 0°) × 60) = 42's = (.7135° - 0° - 42'/60) × 3600 = 48.6".7135°= 0° 42' 48.6"
How to convert decimal degrees to degrees,minutes,secondsOne degree (°) is equal to 60 minutes (') and equal to 3600 seconds ("):
1° = 60' = 3600"
The integer degrees (d) are equal to the integer part of the decimal degrees (dd):
d = integer(dd)
The minutes (m) are equal to the integer part of the decimal degrees (dd) minus integer degrees (d) times 60:
m = integer((dd - d) × 60)
The seconds (s) are equal to the decimal degrees (dd) minus integer degrees (d) minus minutes (m) divided by 60 times 3600:
s = (dd - d - m/60) × 3600