Formula to find the arc length is:

Where, s= arc length,
r = radius of the circle
\theta = central angle in degrees.
According to the given problem, \theta= 150 and r =2.4.
So, first step is to plug in these values in the above formula to get the arc length.

=


So, arc length is
.
Answer:
10,995.6 ft^3.
2300.3 gallons.
(both to the nearest tenth).
Step-by-step explanation:
Area of the surface of the river = area of the outer circle - area of the inner circle.
Radius of the outer circle = 30 *3 = 90 feet.
So the surface area of the river = π(90)^2 - π(85)^2
= 875π ft^2
Also the volume of the river = surface area * depth = 875π*4 = 3500π ft^3
= 10,995.6 ft^3.
Number of gallons of water it will hold = 10,995.6 / 4.78
= 2300.3 gallons.
69.1 is already a decimal.
This is because when we do verification of an
identity, we must work separately on both sides, and to see in the end
if we can get an equality. Because if we square both sides, that already means
that we assume that the equality exist in the beginning, so no need to
verify the identity.