Explanation:
Work done by winch = kinetic energy of car
∫ T ds = ½ mv²
∫ 225s ds = ½ mv²
225/2 s² = ½ mv²
225 s² = mv²
v = 15s / √m
Given s = 10 m and m = 2500 kg:
v = 15 (10) / √2500
v = 3 m/s
Answer:
100 V
Explanation:
Hi there!
Ohm's law states that
where V is the voltage, I is the current and R is the resistance.
Plug the given information into Ohm's law (R=50, I=A)

Therefore, the voltage across this current is 100 V.
I hope this helps!
The correct answer you're looking for would be Theories.
Answer:
A. -2.16 * 10^(-5) N
B. 9 * 10^(-7) N
Explanation:
Parameters given:
Distance between their centres, r = 0.3 m
Charge in first sphere, Q1 = 12 * 10^(-9) C
Charge in second sphere, Q2 = -18 * 10^(-9) C
A. Electrostatic force exerted on one sphere by the other is:
F = (k * Q1 * Q2) / r²
F = (9 * 10^9 * 12 * 10^(-9) * -18 * 10^(-9)) / 0.3²
F = -2.16 * 10^(-5) N
B. When they are brought in contact by a wire and are then in equilibrium, it means they have the same final charge. That means if we add the charges of both spheres and divided by two, we'll have the final charge of each sphere:
Q1 + Q2 = 12 * 10^(-9) + (-18 * 10^(-9))
= - 6 * 10^(-9) C
Dividing by two, we have that each sphere has a charge of -3 * 10^(-9) C
Hence the electrostatic force between them is:
F = [9 * 10^9 * (-3 * 10^(-9)) * (-3 * 10^(-9)] / 0.3²
F = 9 * 10^(-7) N