Answer:
The magnitude of the applied torque is 
(e) is correct option.
Explanation:
Given that,
Mass of object = 3 kg
Radius of gyration = 0.2 m
Angular acceleration = 0.5 rad/s²
We need to calculate the applied torque
Using formula of torque

Here, I = mk²

Put the value into the formula



Hence, The magnitude of the applied torque is 
Answer:
D. 2^(3/2)
Explanation:
Given that
T² = A³
Let the mean distance between the sun and planet Y be x
Therefore,
T(Y)² = x³
T(Y) = x^(3/2)
Let the mean distance between the sun and planet X be x/2
Therefore,
T(Y)² = (x/2)³
T(Y) = (x/2)^(3/2)
The factor of increase from planet X to planet Y is:
T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)
T(Y) / T(X) = (2)^(3/2)
Answer:
Option B, Fix the piston in place so the volume of the pas remains constant
Explanation:
As we know

The effect on variable due to another variable can be studied by keeping the third variable constant.
Hence, in order the study the variation of temperature with pressure or vice versa, the volume needs to fixed at a certain value.
Hence, option B is correct