This question involves the concepts of the law of conservation of momentum and velocity.
The velocity of the eight ball is "5.7 m/s".
According to the law of conservation of momentum:

where,
m₁ = mass of number three ball = 5 g
m₂ = mass of the eight ball = 6 g
u₁ = velocity of the number three ball = 3 m/s
u₂ = velocity of the eight ball = - 1 m/s (negative sign due to opposite direction)
v₁ = final velocity of the three number ball = - 5 m/s
v₂ = final velocity of the eight ball = ?
Therefore,
(5 g)(3 m/s) + (6 g)(- 1 m/s) = (5 g)(- 5 m/s) + (6 g)(v₂)

<u>v₂ = 5.7 m/s</u>
<u></u>
Learn more about the law of conservation of momentum here:
brainly.com/question/1113396?referrer=searchResults
<span>Science is always defined as the body of knowledge and linked to something
related to the physical world, phenomena and lives of everything that exist on
Earth. Science is categorized in various ways. Pure, practical or theoretical, is the largest
distinction of science or whether
science is applied. Generally, pure
science is subdivided into Physical sciences, Earth sciences, and Life
sciences. Physical sciences deal with
energy and matter, Earth sciences explain Earth’s phenomena, to the solar
system where it belongs and its atmosphere. And finally, life sciences describe
internal processes of living organisms, its relationship to each other and to
its environment.</span>
Answer:
The impulse on the object is 60Ns.
Explanation:
Impulse is defined as the product of the force applied on an object and the time at which it acts. It is also the change in the momentum of a body.
F = m a
F = m(
)
⇒ Ft = m(
-
)
where: F is the dorce on the object, t is the time at which it acts, m is the mass of the object,
is its initialvelocity and
is the final velocity of the object.
Therefore,
impulse = Ft = m(
-
)
From the question, m = 3kg,
= 0m/s and
= 20m/s.
So that,
Impulse = 3 (20 - 0)
= 3(20)
= 60Ns
The impulse on the object is 60Ns.
Answer:
Kinematics is the study of motion, without any reference to the forces that cause the motion. It basically means studying how things are moving, not why they're moving. It includes concepts such as distance or displacement, speed or velocity, and acceleration, and it looks at how those values vary over time.