a) the kinetic energy decreases as in a gas, the particles are widespread and move freely but in a liquid, their movement is more limited
Hearing loss due to sound energy damaging the nerve cells in the inner ear. Many animals behavior is influenced by sound energy. They learn to associate events with sounds, so they run when something crunches in the dry grass (might be a coyote), but won't be bothered by the sound of a waterfall. Mood is affected by sound energy. A wine glass can break with sound energy, if the frequency matches the resonant frequency of the wine glass and the amplitude is great enough (one Mythbusters show featured a professional singer who broke a wine glass with his voice without any amplification).
<u> </u> The pH of 0.035 M aqueous aspirin is 2.48
<u>Explanation:</u>
We are given:
Concentration of aspirin = 0.035 M
The chemical equation for the dissociation of aspirin (acetylsalicylic acid) follows:

<u>Initial:</u> 0.035
<u>At eqllm:</u> 0.035-x x x
The expression of
for above equation follows:
![K_a=\frac{[C_9H_7O_4^-][H^+]}{[HC_9H_7O_4]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BC_9H_7O_4%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHC_9H_7O_4%5D%7D)
We are given:

Putting values in above expression, we get:

Neglecting the value of x = -0.0037 because concentration cannot be negative
So, concentration of
= x = 0.0033 M
- To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
= 0.0033 M
Putting values in above equation, we get:

Hence, the pH of 0.035 M aqueous aspirin is 2.48
Chemical reaction that absorbs heat from its environment