This may seem confusing because they give you two masses, but all you have to do is pick one to do the calculations. Personally, I would pick O2, since the molar mass is easier to calculate. The answer would be 3.3 g (rounded for sig figs). To get this, first take the 5.9 grams of O2 and convert it to moles by dividing by the molar mass of oxygen gas, which is 32. Then, multiply both by the mole-mole ratio, which is 2:2, or simply 1:1. After that, multiply that by 18g, which is the molar mass of water to get grams of water.
REMEMBER, you have to write and balance the chemical equation before you can do any of that work.
That happens to be CH4 + 2O2 => CO2 + 2H2O
<u>Answer:</u> The force that must be applied is 15 N.
<u>Explanation:</u>
Force exerted on the object is defined as the product of mass of the object and the acceleration of the object.
Mathematically,

where,
F = force exerted = ?
m = mass of the object = 3 kg
a = acceleration of the object = 
Putting values in above equation, we get:

Hence, the force that must be applied is 15 N.
Answer:
SiF4 is not a polar covalent bond.
Explanation:
SiF4 is a nonpolar molecule because the fluorine's are arranged around the central silicon atom in a tetrahedral molecule with all of the regions of negative charge cancelling each other out.
D) blue
(about 400 nanometers)