The average molecular weight of the mixture can be calculated using this formula:
MWav = x1MW1 + x2MW2
Where x is the mass fraction of the components of the mixture, in this case, copper (63.546 g/mol) and zinc (<span>65.38 g/mol).
</span>
x1 = 7.36 / (7.36+0.51)=0.935
x2 = 0.51 / (7.36+0.51)=0.065
So,
MWav = 0.935(63.546) + 0.065(65.38) = 63.665 g/mol
<h3>Answer:</h3>
Strontium (Sr)
<h3>Explanation:</h3>
The condition given in statement is the presence of two valence electron. Hence, first we found the electronic configuration of given atoms as follow;
Rubidium [Kr] 5s¹
Strontium [Kr] 5s²
Zirconium [Kr] 4d² 5s²
Silver [Kr] 4d¹⁰ 5s¹
From above configurations it is cleared that only Strontium and Zirconium has two electrons in its valence shell.
We also know that s-block elements are more reactive than transition elements due to less shielding effect in transition elements hence, making it difficult for transition metals to loose electrons as compared to s-block elements. Therefore, we can conclude that Strontium present in s-block with two valence electrons is the correct answer.
12.01 amu
Work:
(12.000 × .9889) + (13.003 × .0111) = 12.01
- turn the precents into decimals
Answer: 92 kg
Explanation:
because the rest of them are increasing weight or not changing at all and if you were to go to the moon you would weigh less
t1/2 = ln 2 / λ = 0.693 / λ
Where t1/2 is the half life of the element and λ is decay constant.
32 = 0.693 / λ
λ = 0.693 / 32 (1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, λ is decay constant and t is the time taken.
t = 1.9 hours = 1.9 x 60 min
From (1) and (2),
Nt = Nο e⁻Λ(0.693/32)*1.9*60
Nt = 0.085Nο
Percentage = (Nt/Nο) x 100%
= (0.085Nο/Nο) x 100%
= 8.5%
Hence, Percentage of remaining atoms with the original sample is 8.5%