Answer:

Explanation:
Here, we want to calculate the final volume
We use the general gas equation here:

P1 is the initial pressure which is 0.850 atm
V1 is the initial volume which is 4.25 L
T1 is the initial temperature which is (23 + 273.15 = 296.15 K)
P2 is the final pressure which is 1.50 atm
V2 is the final volume which is unknown
T2 is the final temperature (11.5 + 273.15 = 284.65 K)
Substituting the values, we have:
Answer:
The experimental feature of the MALDI-MS technique which allows the separation of ions formed after the adduction of tissue molecules:
B) Velocity of ions depends on the ion mass-to-charge ratio.
Explanation:
- The option a is not correct as distance traveled by ions doesn't depend upon the ion charge rather it depends upon time for which you leave the sample to run.
- The option b is correct as velocity of ions depends on the ion mass-to-charge ratio because separation is done due to mass to charge ratio feature.
- The option c is incorrect as time of travel is not inversely proportional to the ion-to-mass ratio because the ion will move across the gel until you stop the electric field.
- The option d is not correct as electric field between MALDI plate and MS analyzer is though uniform but this feature doesn't allow the separation of ions.
Answer:
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
slow
fast
To determine the net chemical equation, we will simply add the above two equations, we get:
![Rate=k[O_3][NO_2]^2](https://tex.z-dn.net/?f=Rate%3Dk%5BO_3%5D%5BNO_2%5D%5E2)
Order with respect to
is 1 and Order with respect to
is 2.
Thus the rate law will be:
Answer:
Explanation:
When comparing the drops of oil and water, one thing I noticed was the shape. The water drop was more defined, whereas the drop of oil began to spread and was much flatter. This may be due to the waxy material, and how both oil and water react to the wax.
Explanation:
Beryllium is a group 2 element and its atomic number is 4. Electronic configuration of beryllium is
.
Since, a beryllium contains two valence electrons so, in order to attain stability it will readily lose its 2 valence electrons.
Therefore, a beryllium atom upon losing two valence electrons will acquire a +2 charge.
Thus, we can conclude that the net ion charge of Beryllium is +2.