Answer:
The statements which are true among these are: (a),(b) and (c) because,
(a) The simplest organic compounds which contains only carbon and hydrogen atoms are called hydrocarbons.
(b) The IUPAC naming of organic compounds have some rules for the naming of compounds, which consists of
- Finding the longest chain present in the compound called parent chain.
- A prefix for any substituent attach to the parent chain.
And lastly a suffix for the type of bond that molecule have.
(c) Isomers are the compound which same same molecular formula but different arrangement of molecules, due to this different arrangement they have different physical and chemical properties.
Given: C3H8(g) + O2(g) ----> CO2 (g) + H2O (g)
Step : Put a 3 in front of CO2 (g) to balance C
=> C3H8(g) + O2(g) ----> 3CO2 + H2O to balance H
Step 2: Put a 4 in front of H2O
=> C3H8 (g) + O2(g) -----> 3CO2 (g) + 4H2O (g)
Step 3: Given that there are 3*2 + 4 = 10 O to the right side, put a 5 in front of O2 to balance O:
=> C3H8(g) + 5O2(g) -----> 3CO2(g) + 4H2O(g)
You can verify that the equation is balanced.
So, the answer is that the coefficient in front of O2 is 5.
Answer:
0.0845 M
Explanation:
First we <u>convert 4.27 grams of potassium iodide into moles</u>, using its <em>molar mass</em>:
- Molar Mass of KI = 166 g/mol
- 4.27 g ÷ 166 g/mol = 0.0257 mol
Now we <u>calculate the molarity of the solution</u>, using <em>the number of moles and the given volume</em>:
- Molarity = moles / liters
- Molarity = 0.0257 mol / 0.304 L = 0.0845 M
Yes a red blood cell placed in a sline solution shrinks because of the process of osmosis.
Answer :
The equilibrium concentration of CO is, 0.016 M
The equilibrium concentration of Cl₂ is, 0.034 M
The equilibrium concentration of COCl₂ is, 0.139 M
Explanation :
The given chemical reaction is:

Initial conc. 0.1550 0.173 0
At eqm. (0.1550-x) (0.173-x) x
As we are given:

The expression for equilibrium constant is:
![K_c=\frac{[COCl_2]}{[CO][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCOCl_2%5D%7D%7B%5BCO%5D%5BCl_2%5D%7D)
Now put all the given values in this expression, we get:

x = 0.139 and x = 0.193
We are neglecting value of x = 0.193 because equilibrium concentration can not be more than initial concentration.
Thus, we are taking value of x = 0.139
The equilibrium concentration of CO = (0.1550-x) = (0.1550-0.139) = 0.016 M
The equilibrium concentration of Cl₂ = (0.173-x) = (0.173-0.139) = 0.034 M
The equilibrium concentration of COCl₂ = x = 0.139 M