Answer:
1 : 1.5
Explanation:
First Sample;
Ratio of sulfur and Oxygen
Mass of sulfur : Mass of oxygen
Mass of oxygen = Mass of sample - Mass of sulfur = 70 - 35 = 35g
35g : 35g
1 : 1
Second Sample;
Ratio of sulfur and Oxygen
Mass of sulfur : Mass of oxygen
Mass of oxygen = Mass of sample - Mass of sulfur = 70 - 28 = 42g
28g : 42g
1 : 1.5
Further reducing it to make oxygen 1;
0.6667 : 1
ratio in whole numbers of the masses of sulfur that combine with 1.00 g of oxygen between the two compounds;
0.6667 : 1
1 : 1.5
Answer:

Explanation:
Hello,
In this case, the enthalpy of combustion is understood as the energy released when one mole of fuel, in this case octene, is burned in the presence of oxygen and is computed with the enthalpies of formation of the fuel, carbon dioxide and water as shown below (oxygen is circumvented as it is a pure element):

Thus, since we already know the enthalpy of combustion of the fuel, for carbon and water we have -393.5 and -241.8 kJ/mol respectively, thereby, the enthalpy of combustion turns out:

Best regards.
Answer:
SeCl₆ < SeF₂ < SeO₂
Explanation:
(A) SeO₂
The central atom has 2 bond pairs and 1 lone pair. The molecule is bent shaped which has an angle of 120°.
(B) SeCl₆
The central atom has 6 bond pairs and 0 lone pair. The geometry is octahedral in which the equatorial bonds has an angle of 90° and axial bond has an angle of 90°.
(C) SeF₂
The central atom has 2 bond pairs and 2 lone pairs. The geometry is bent shape which has an angle of approximately 105.5°.
The order is:
<u>SeCl₆ < SeF₂ < SeO₂</u>
Answer:
Atoms of each element contain a characteristic number of protons and electrons. The number of protons determines an element's atomic number and is used to distinguish one element from another.
Answer:
Ionic
Explanation:
If A does not have electron to bond, it just receives one electron from B.
It can´t be covalent because A don´t have any electrons to bond with B.