Force= mass *acceleration=kg* m/s2=kgm/s2
Answer:
19.1 secs
Explanation:
The first step is to calculate the velocity
= 17.4/47.6
= 0.37 m/s
Therefore the time taken for the person to reach the top can be calculated as follows
= 17.4/(0.37+0.541)
= 17.4 / 0.911
= 19.1 secs
Hence the time taken is 19.1 secs
The wavelength for C1 note is 10.40 m, for A6 note is 0.193 m and for B7 note 0.086 m.
Answer:
Explanation:
Since, wavelength, frequency and speed of sound waves are related to each other, we can determine a single parameter with the help of other two parameters. So in this case, the frequency of different notes are given along with their common speed. So as the frequency is inversely proportional to the wavelength then in this case, the wavelength of the notes will be maximum for C1 and minimum for 3951.1 Hz.
Wavelength = Speed / Frequency
Wavelength for C1 note = 340 / 32.7 =10.40 m
Similarly, the wavelength for A6 note = 340/1760=0.193 m
And, the wavelength for B7 note = 340/3951.1 = 0.086 m
So, the wavelength for C1 note is 10.40 m, for A6 note is 0.193 m and for B7 note 0.086 m.
Initial velocity of the object: 5 m/s
Explanation:
The figure in the problem is missing: find it in attachment.
The graph in the figure represents the velocity of an object (v) versus the time passed (t).
Here we are asked to find the initial velocity of the object.
This means that we have to find the velocity of the object when the time is zero, so when
t = 0
By looking at the corresponding value on the y-axis (velocity), we see that when t = 0, then
v = 5 m/s
Therefore, the initial velocity of the object is 5 m/s.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly