Answer:
The total electric potential at mid way due to 'q' is 
The net Electric field at midway due to 'q' is 0.
Solution:
According to the question, the separation between two parallel plates, plate A and plate B (say) = d
The electric potential at a distance d due to 'Q' is:

Now, for the Electric potential for the two plates A and B at midway between the plates due to 'q':
For plate A,
Similar is the case with plate B:
Since the electric potential is a scalar quantity, the net or total potential is given as the sum of the potential for the two plates:


Now,
The Electric field due to charge Q at a distance is given by:

Now, if the charge q is mid way between the field, then distance is
.
Electric Field at plate A,
at midway due to charge q:

Similarly, for plate B:

Both the fields for plate A and B are due to charge 'q' and as such will be equal in magnitude with direction of fields opposite to each other and hence cancels out making net Electric field zero.
The answer is a
the equation needs to be balanced. There are fewer oxygen atoms in the equation than hydrogen or a carbon
<u>ALL of the following work assumes NO AIR RESISTANCE:</u>
1). an object moving under the influence of only gravity, and not in orbit; its horizontal velocity is constant, and its vertical motion is accelerated downward at 9.8 m/s²
2). a parabola
3). Horizontal: velocity is constant, acceleration is zero. . . . Vertical: acceleration is 9.8 m/s² downward, velocity depends on whether it was launched, thrown up, thrown down, dropped, etc.
4). a). the one that was thrown horizontally; b). both hit the ground at the same time; c). both hit the ground with the same vertical velocity
5). a). zero; b). zero; c). gravity ... 9.8 m/s² down; d). 3.06 seconds; e). 4.38 m/s; f). 30 m/s g). no; gravity has no effect on horizontal motion
6). a). 1.8 seconds; b). 13.1 meters; c). 17.6 m/s down; d). 7.3 m/s; gravity has no effect on horizontal motion
7). 45 m/s
8). without air resistance, the ball is traveling horizontally at 13 km/hr, and it lands back in your hand
9). a). 4.49 m/s; b). 29.7 m/s
10). 7.24 meters
11). 700 meters
12). A). 103.7 meters ( ! she's in big trouble ! ); B). 17.5 meters
Answer:
-2.83 m/s²
Explanation:
- Initial velocity (u) = 34 m/s
- Final velocity (v) = 17 m/s
- Time taken (t) = 6 seconds
❖ Acceleration is defined as the rate of change in velocity with time.
→ a = (v - u)/t
- v denotes final velocity
- a denotes acceleration
- u denotes initial velocity
- t denotes time
→ a = (17 - 34)/6 m/s²
→ a = -17/6 m/s²
<h3>→ Acceleration = -2.83 m/s²</h3>
(Minus sign implies that the velocity is decreasing.)