The guy below is wrong!
F=ma
Where force = mass x acceleration
We dont have acceleration, a= change in velocity divided by the time taken.
a = v (final velocity) - u (initial) / t
a us 8-0 (at rest means u was 0) / 20 = 0.4
Using F=ma
F= mass x acceleration
F= 4 x 0.4
F=1.6 N
One electron Volt (eV) is equal to 1.6 x 10^-19 Joules. Therefore, 10 eV is equal to 1.6 x 10^-18 Joules. In order to produce 20 Joules of energy from 10 eV photons, we would require 20 x 1/(1.6 x 10^-18) = 1.25 x 10^19 particles. This demonstrates that in the world of particle physics, the Joule is a massive energy unit relative to the commonly used electron Volt.
John used smothering as the method to control the harmful invasive plants in his orchard. Smothering is an example of a manual method of control and it works best in a small population of invasive species. Smothering involves covering the invasive species with a barrier that is highly impenetrable for one growing season in order to prevent these species from thriving in the environment.
Answer:
The sum of all forces for the two objects with force of friction F and tension T are:
(i) m₁a₁ = F
(ii) m₂a₂ = T - F
1) no sliding infers: a₁ = a₂= a
The two equations become:
m₂a = T - m₁a
Solving for a:
a = T / (m₁+m₂) = 2.1 m/s²
2) Using equation(i):
F = m₁a = 51.1 N
3) The maximum friction is given by:
F = μsm₁g
Using equation(i) to find a₁ = a₂ = a:
a₁ = μs*g
Using equation(ii)
T = m₁μsg + m₂μsg = (m₁ + m₂)μsg = 851.6 N
4) The kinetic friction is given by: F = μkm₁g
Using equation (i) and the kinetic friction:
a₁ = μkg = 6.1 m/s²
5) Using equation(ii) and the kinetic friction:
m₂a₂ = T - μkm₁g
a₂ = (T - μkm₁g)/m₂ = 12.1 m/s²