Answer:
28.5 m/s
18.22 m/s
Explanation:
h = 20 m, R = 20 m, theta = 53 degree
Let the speed of throwing is u and the speed with which it strikes the ground is v.
Horizontal distance, R = horizontal velocity x time
Let t be the time taken
20 = u Cos 53 x t
u t = 20/0.6 = 33.33 ..... (1)
Now use second equation of motion in vertical direction
h = u Sin 53 t - 1/2 g t^2
20 = 33.33 x 0.8 - 4.9 t^2 (ut = 33.33 from equation 1)
t = 1.17 s
Put in equation (1)
u = 33.33 / 1.17 = 28.5 m/s
Let v be the velocity just before striking the ground
vx = u Cos 53 = 28.5 x 0.6 = 17.15 m/s
vy = uSin 53 - 9.8 x 1.17
vy = 28.5 x 0.8 - 16.66
vy = 6.14 m/s
v^2 = vx^2 + vy^2 = 17.15^2 + 6.14^2
v = 18.22 m/s
Answer: analog-to-digital
Explanation: Analog-to-digital converters as the name implies simply refers to components which are used to convert continuous analog signals into a discrete analog outputs so they it can be read and processed by a microprocessor. The microprocessors are unable to depict and read analog signals which could be gathered from sound, light or water wave sources. This wave sources are then sampled, processed and sorted into levels by the analog-to-digital converter before being sent to the microprocessor so that the waves can be read.
Answer:
ive answered this
Explanation:
please check your previose question
Answer:
move at constant velocity.
Explanation:
Newton's first law (also known as law of inertia) states that:
"when the net force acting on an object is zero, the object will keep its state of rest or if it is moving, it will continue moving at constant velocity".
In the case of the probe, friction in deep space is negligible, therefore when the engine is shut down, there are no more forces acting on the probe: the net force therefore will be zero, so the probe will move at constant velocity.
Answer:
The object starts away from the origin and then moves toward the origin at a constant velocity. Next, it stops for one second. Finally, it moves away from the origin at a greater constant velocity.