1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ra1l [238]
3 years ago
5

Need help asap!!!!!!!

Mathematics
1 answer:
Phoenix [80]3 years ago
3 0

Answer:

d

Step-by-step explanation:


You might be interested in
Please help. the packet is due tonight
Zolol [24]

Answer:

[C]  \displaystyle \frac{-3}{250}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring
  • Functions
  • Function Notation
  • Conjugations

<u>Calculus</u>

  • Limits
  • Limit Rule [Variable Direct Substitution]:                                                     \displaystyle \lim_{x \to c} x = c
  • Limit Property [Multiplied Constant]:                                                           \displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)
  • Derivatives
  • Definition of a Derivative:                                                                             \displaystyle f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle g(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

\displaystyle f(x) = \frac{3}{\sqrt{x - 4}}

\displaystyle g(29)

<u>Step 2: Differentiate</u>

  1. Substitute in function [Function g(x)]:                                                           \displaystyle g(x) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{x + h - 4}} - \frac{3}{\sqrt{x - 4}}}{h}
  2. Substitute in <em>x</em> [Function g(x)]:                                                                       \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{29 + h - 4}} - \frac{3}{\sqrt{29 - 4}}}{h}
  3. Simplify:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{25 + h}} - \frac{3}{5}}{h}
  4. Rewrite:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{15}{5\sqrt{25 + h}} - \frac{3\sqrt{25 + h}}{5\sqrt{25 + h}}}{h}
  5. [Subtraction] Combine like terms:                                                               \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{15 - 3\sqrt{25 + h}}{5\sqrt{25 + h}}}{h}
  6. Factor:                                                                                                           \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3(5 - \sqrt{25 + h})}{5\sqrt{25 + h}}}{h}
  7. Rewrite:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{3(5 - \sqrt{25 + h})}{5h\sqrt{25 + h}}
  8. Rewrite [Limit Property - Multiplied Constant]:                                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{5 - \sqrt{25 + h}}{h\sqrt{25 + h}}
  9. Root Conjugation:                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{5 - \sqrt{25 + h}}{h\sqrt{25 + h}} \cdot \frac{5 + \sqrt{25 + h}}{5 + \sqrt{25 + h}}
  10. Multiply:                                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-h}{5h\sqrt{25 + h} + h^2 + 25h}
  11. Factor:                                                                                                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-h}{h(5\sqrt{25 + h} + h + 25)}
  12. Simplify:                                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-1}{5\sqrt{25 + h} + h + 25}
  13. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-1}{5\sqrt{25 + 0} + 0 + 25}
  14. Simplify:                                                                                                         \displaystyle g(29) = \frac{3}{5} \cdot \frac{-1}{50}
  15. Multiply:                                                                                                         \displaystyle g(29) = \frac{-3}{250}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

8 0
3 years ago
An airplane flew a distance of 650 km at an average speed of 300 km/h. How much time did the flight take
galina1969 [7]
650/300 = 2(1/6)
(1/6) of 1 hour = 10mins
The flight took 2hr and 10mins.
6 0
3 years ago
Solve the inequalities by graphing. Select the correct graph.<br><br> 5 x + 2 y 3 <br> y x
mrs_skeptik [129]

Answer:

real quick what is the graph for the awnsers sorry but we cant help unless their is a graph

Step-by-step explanation:

4 0
3 years ago
Solve for the variable: p − 4.8 (less than or = to sign) 6.
VashaNatasha [74]
P - 4.8 ≤ 6
p - 4.8 + 4.8 ≤ 6 + 4.8
p ≤ 10.8

3 0
3 years ago
What is the value of y? NU=9, NM= 3, MT= 6, TN= y
nevsk [136]

Answer:

6\sqrt{3}

Step-by-step explanation:

We have to use Pythagoras' identity twice to find y

The square on the hypotenuse is equal to the sum of the squares on the other two sides.

In right triangle MUT to find TU

TU² + 3² = 6², that is

TU² + 9 = 36 ( subtract 9 from both sides )

TU = 27 ( take the square root of both sides )

TU = \sqrt{27} = \sqrt{9(3)} = 3\sqrt{3}

In right triangle NUT to find y

y² = 9² + (3\sqrt{3} )² = 81 + 27 = 108 ( take the square root of both sides )

y = \sqrt{108} = \sqrt{36(3)} = 6\sqrt{3}

3 0
3 years ago
Other questions:
  • Unscramble each of the 5 letters to spell two common math words: First word:L-G-O-N-E
    14·1 answer
  • How Many quarters are in a dollar?
    13·2 answers
  • Place the following temperatures in order from coldest to hottest: -8°C, 10°C, -5°F, 40°F a. -5°F, -8°C, 40°F, 10°C b. -5°F, -8°
    12·1 answer
  • The absolute value of nine is
    6·1 answer
  • IM THE COOL KID 121212
    7·2 answers
  • Factorise 8m square - 2m - 15 can someone do it quickly pls​
    12·1 answer
  • Is 7 a positive or Negative number?
    8·1 answer
  • Traveling at 60 miles per hour, a vehicle covers 1 mile in 1 minute. How long will it take to drive 180 miles, if the vehicle is
    14·1 answer
  • Which two ratios form a proportions? question 1 options: 1 2 and 42
    15·1 answer
  • f Daria repeats the experiment 50 more times, how many of those times should she expect to pull a yellow marble?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!