The minerals in hard water react with soap and affect its cleaning capacity. It's still possible to use hard water when washing by using more soap. The additional soap will no longer be affected by the minerals in the water, so they can clean just as effectively, but you'll be wasting more soap this way.
A<em>ns</em><em>w</em><em>e</em><em>r</em>
<h2>
<em>K </em><em>eq</em><em>=</em><em>1</em><em>.</em><em>3</em><em>3</em></h2>
<em>please </em><em>see</em><em> the</em><em> attached</em><em> </em><em>picture.</em><em>.</em><em>.</em><em>.</em>
<em>Hope </em><em>it</em><em> helps</em><em>.</em><em>.</em>
<em>good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em>
Answer:
he decided to become a teacher because he studied expertise and wanted to teach about early life
Explanation:
There are 2.32 x 10^6 kg sulfuric acid in the rainfall.
Solution:
We can find the volume of the solution by the product of 1.00 in and 1800 miles2:
1800 miles2 * 2.59e+6 sq m / 1 sq mi = 4.662 x 10^9 sq m
1.00 in * 1 m / 39.3701 in = 0.0254 m
Volume = 4.662 x 10^9 m^2 * 0.0254 m
= 1.184 x 10^8 m^3 * 1000 L / 1 m3
= 1.184 x 10^11 Liters
We get the molarity of H2SO4 from the concentration of [H+] given by pH = 3.70:
[H+] = 10^-pH = 10^-3.7 = 0.000200 M
[H2SO4] = 0.000100 M
By multiplying the molarity of sulfuric acid by the volume of the solution, we can get the number of moles of sulfuric acid:
1.184 x 10^11 L * 0.000100 mol/L H2SO4 = 2.36 x 10^7 moles H2SO4
We can now calculate for the mass of sulfuric acid in the rainfall:
mass of H2SO4 = 2.36 x 10^7 moles * 98.079 g/mol
= 2.32 x 10^9 g * 1 kg / 1000 g
= 2.32 x 10^6 kg H2SO4