Well if the change is reversible then it is a physical change, but if not then it is a chemical change.
Answer:
Theoretical yield of the reaction = 34 g
Excess reactant is hydrogen
Limiting reactant is nitrogen
Explanation:
Given there is 100 g of nitrogen and 100 g of hydrogen
Number of moles of nitrogen = 100 ÷ 28 = 3·57
Number of moles of hydrogen = 100 ÷ 2 = 50
Reaction between nitrogen and hydrogen yields ammonia according to the following chemical equation
N2 + 3H2 → 2NH3
From the above chemical equation for every mole of nitrogen that reacts, 3 moles of hydrogen will be required and 2 moles of ammonia will be formed
Now we have 3·57 moles of nitrogen and therefore we require 3 × 3·57 moles of hydrogen
⇒ We require 10·71 moles of hydrogen
But we have 50 moles of hydrogen
∴ Limiting reactant is nitrogen and excess reactant is hydrogen
From the balanced chemical equation the yield will be 2 × 3·57 moles of ammonia
Molecular weight of ammonia = 17 g
∴ Theoretical yield of the reaction = 2 × 3·57 × 17 = 121·38 g
The number of chlorine atoms present on the product side of the reaction is 6
<h3>What is a chemical equation? </h3>
Chemical equations are representations of chemical reactions using symbols and formula of the reactants and products.
The balancing of chemical equations follows the law of conservation of matter which states that matter can neither be created nor destroyed during a chemical reaction but can be transferred from one form to another.
<h3>How to determine the number of atoms of Cl</h3>
2Al + 6HCl → 2AlCl₃ + 3H₂
Products => AlCl₃ and H₂
Number of Cl atoms = 2 × 3
Number of Cl atoms = 6 atoms
Learn more about chemical equation:
brainly.com/question/7181548
#SPJ4
Answer:
10.6 g CO₂
Explanation:
You have not been given a limiting reagent. Therefore, to find the maximum amount of CO₂, you need to convert the masses of both reactants to CO₂. The smaller amount of CO₂ produced will be the accurate amount. This is because that amount is all the corresponding reactant can produce before it runs out.
To find the mass of CO₂, you need to (1) convert grams C₂H₂/O₂ to moles (via molar mass), then (2) convert moles C₂H₂/O₂ to moles CO₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles CO₂ to grams (via molar mass). *I had to guess the chemical reaction because the reaction coefficients are necessary in calculating the mass of CO₂.*
C₂H₂ + O₂ ----> 2 CO₂ + H₂
9.31 g C₂H₂ 1 mole 2 moles CO₂ 44.0095 g
------------------ x ------------------- x ---------------------- x ------------------- =
26.0373 g 1 mole C₂H₂ 1 mole
= 31.5 g CO₂
3.8 g O₂ 1 mole 2 moles CO₂ 44.0095 g
------------- x -------------------- x ---------------------- x -------------------- =
31.9988 g 1 mole O₂ 1 mole
= 10.6 g CO₂
10.6 g CO₂ is the maximum amount of CO₂ that can be produced. In other words, the entire 3.8 g O₂ will be used up in the reaction before all of the 9.31 g C₂H₂ will be used.
Answer:
The answer to the question is;
The occupant load of the store having a floor area of 100,000 ft² is 3,317.86 persons.
Explanation:
Based on NFPA guidelines we have for sales on street floor, the allowable occupant load factor per person is 30 ft²
That is where the floor area is 100,000 square feet we have the number of allowable occupant given by
(100,000 ft²)/(30 ft²/Person) =
or 3,333 persons
That is the occupant load of the store if the floor area is 100,000 square feet = 3,333 persons
Based on m² we have 9,290 m² will require 2.8 m²/person
which gives;
(9,290 m²)/(2.8 m²/person) =
= 23225/7 or 3,317.86 persons
Therefore applying safety, we go with the lesser number and we have
The occupant load of the store having a floor area of 9,290 m² = 3,317.86 persons.