Answer:
2.11 x 10²⁴ molecules.
Explanation:
- <em>It is known that every 1.0 mole of a molecule contains Avogadro's number of molecules (NA = 6.022 x 10²³).</em>
<em><u>Using cross multiplication:</u></em>
1.0 mole of H₂O contains → 6.022 x 10²³ molecules.
3.5 mole of H₂O contains → ??? molecules.
∴ 3.5 mole of H₂O contain = (3.5 mol)(6.022 x 10²³) = 2.11 x 10²⁴ molecules.
Using accurate measurements, using pure chemicals and performing the reaction under the most ideal conditions is important to get a valuable percent yield.
<h3>How we calculate the percent yield?</h3>
Percent yield of any chemical reaction is define as the ratios of the actual yield to the theoretical yield of the product and multiply by the 100.
To get the high percent yield or actual yield of any reaction, we have to perform the reaction under ideal condition because if we not use the standard condition then we get the low rate of reaction. Reactants should be present in the pure form as impurity make unwanted products and reduce the productivity of main product and accurate amount of reactants also important for the spontaneous reaction.
Hence, options (a), (b) & (c) are correct.
To know more about percent yield, visit the below link:
brainly.com/question/8638404
Answer:
the answer is Fungi
Explanation:
it makes its own food and doesn't move from place to place that why this is the answer
Answer:
54 days
Explanation:
We have to use the formula;
0.693/t1/2 =2.303/t log Ao/A
Where;
t1/2= half-life of phosphorus-32= 14.3 days
t= time taken for the activity to fall to 7.34% of its original value
Ao=initial activity of phosphorus-32
A= activity of phosphorus-32 after a time t
Note that;
A=0.0734Ao (the activity of the sample decreased to 7.34% of the activity of the original sample)
Substituting values;
0.693/14.3 = 2.303/t log Ao/0.0734Ao
0.693/14.3 = 2.303/t log 1/0.0734
0.693/14.3 = 2.6/t
0.048=2.6/t
t= 2.6/0.048
t= 54 days
<span>Both provide approaches to confirming the result of experimentation. Repetition can be developed by one scientist or team continually achieving the expected result but replication requires an independent person or team shows thay can arrive at the same answer independently</span>