Notice that
11/12 = 1/6 + 3/4
so that
tan(11π/12) = tan(π/6 + 3π/4)
Then recalling that
sin(x + y) = sin(x) cos(y) + cos(x) sin(y)
cos(x + y) = cos(x) cos(y) - sin(x) sin(y)
⇒ tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) tan(y))
it follows that
tan(11π/12) = (tan(π/6) + tan(3π/4))/(1 - tan(π/6) tan(3π/4))
tan(11π/12) = (1/√3 - 1)/(1 + 1/√3)
tan(11π/12) = (1 - √3)/(√3 + 1)
tan(11π/12) = - (√3 - 1)²/((√3 + 1) (√3 - 1))
tan(11π/12) = - (4 - 2√3)/2
tan(11π/12) = - (2 - √3) … … … [A]
Answer:
57.97507788%
Step-by-step explanation:
Write the problem as a mathematical expression.
<u>372.2</u>
642
Multiply by 100 to convert to a percentage.
<u>372.2</u>
642 * 100
Simplify
<u>372.2.</u>
642. * 100 = 57.97507788%
<u />
- The area of the circle is:
A=πr²
A is the area of the circle.
π=3.14
r is the radius of the circle.
- To calculate the area of <span> the sector indicated in the problem, you must apply the following formula:
As=(</span>θ/2π)πr²
As is the area of the sector.
θ is the central angle (θ=2π/9)
π=3.14
r is the radius.
- First, you must find the radius:
r=Diameter/2
r=20.6 mm/2
r=10.3 mm
- Now, you can substitute the values into the formula As=(θ/2π)πr². Then, you have:
As=(θ/2π)πr²
As=(2π/9/2π)(π)(10.3)²
As=(π/9π)(π)(10.3)²
As=(3.14/9x3.14)(3.14)(10.3)²
- Finally, the area of the sector is:
As= 37.01 mm²
Answer:
(7a^2 + 8b^2 + 5ab) (7a^2 + 8b^2 - 5ab)
Step-by-step explanation:
Dado que ambos términos son cuadrados perfectos, puede factorizar utilizando la fórmula de la diferencia de cuadrados, a^2 - b^ 2 = (a + b) (a - b), donde a = 7a^2 + 8b^2 y b = 5ab.
English: Since both terms are perfect squares you can factor using the difference of squares formula, a^2 - b^2 = (a + b)(a - b), where a = 7a^2 + 8b^2 and b = 5ab.