Answer:
1.69515 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

The distance between the traffic and the car after braking is 120-64.06 = 55.94 m
Time = Distance / Speed

The reaction time cannot be more than 1.69515 seconds
Wave speed = (wavelength) x (frequency)
Wave speed = (3 m) x (15 Hz)
<em>Wave speed = 45 m/s</em>
Answer:

Explanation:
As we know that
velocity of bike = 7.5 m/s
velocity of car is 10 m/s
deceleration of car is 0.75 m/s^2
part a)
velocity of bike with respect to car is given as

acceleration of bike with respect to car is given as

now the distance of the bike with respect to car is given as



Part b)
<h2>Answer: True
</h2>
The <u>Doppler effect</u> refers to the change in a wave perceived frequency when the emitter of the waves, and the receiver (or observer in the case of light) move relative to each other.
In other words, it is the variation of the frequency of a wave due to the relative movement of the source of the wave with respect to its receiver.
It should be noted that this effect bears its name in honor of the Austrian physicist <u>Christian Andreas Doppler</u>, who in 1842 proposed the existence of this effect for the case of light in the stars. Another important aspect is that the effect occurs in all waves (including light and sound). However, it is more noticeable to humans with sound waves.
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:
