1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimaraw [331]
3 years ago
9

Howkim has two magnetic first he put gthem beside

Physics
1 answer:
andreyandreev [35.5K]3 years ago
8 0
What does this mean ?
You might be interested in
The diagram is a real world example of the first and second laws of thermodynamics. It shows how thermal energy is used to gener
Dmitriy789 [7]

Answer:

First law: kinetic energy is used to turn an electric generator

Second law: some thermal energy is lost to the environment as it travels through the system

Explanation:

The first law of thermodynamics is known as the law of conservation of energy. It states that energy can neither be created nor destroyed but can only be transferred or changed from one form to another. When thermal energy is used to generate electricity, the kinetic energy of the steam is used to turn the electric generator (thereby producing electrical energy).

The second law of thermodynamics states that energy transfer or transformation leads to an increase in entropy resulting in the loss of energy. This law also states that as energy is transferred or transformed, some is lost in a form that is unusable. When thermal energy is used to generate electricity, some of the thermal energy is lost to the environment as it travels through the system.

7 0
3 years ago
Read 2 more answers
If an object is thrown in an upward direction from the top of a building 160 ft. High at an initial speed of 21.82 mi/h what is
viktelen [127]
To solve this problem we are going to use tow kinematic equations for falling objects.
1. Kinematic equation for final velocity: V_{f}=V_{i}+gt
where
V_{f} is the final velocity 
V_{i} is the initial velocity 
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 
2. Kinematic equation for distance: d=V_{i}t+ \frac{1}{2} gt^2
where
d is the distance 
V_{i} is the initial velocity 
V_{f} is the final velocity
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 

First, we are going to convert 21.82 mi/h to ft/s:
21.82 \frac{mi}{h} =31.21 \frac{ft}{s}

Next, we are going to use the first equation to find how long it takes for the rock to reach its maximum height.
We know for our problem that the object is thrown in upward direction, so its velocity at its maximum height (before falling again) will be zero; therefore: V_{f}=0. We also know that it initial speed is 31.21 ft/s, so V_{i}=31.21. Lets replace those values in our formula to find t:
V_{f}=V_{i}+gt
0=31.21+(-32)t
-32t=-31.21
t= \frac{-31.21}{-32}
t=0.98seconds

Next, we are going to use that time in our second kinematic equation to find the distance the object reach at its maximum height:
d=V_{i}t+ \frac{1}{2} gt^2
d=31.21(0.98)+ \frac{1}{2} (-32)(0.98)^2
d=15.22ft 

Now we can add the height of the building and the maximum height of the object:
d=160+15.22=175.22ft

Next, we are going to use that height (distance) in our second kinematic equation one more time to fin how long it takes for the object to fall from its maximum height to the ground:
d=V_{i}t+ \frac{1}{2} gt^2
175.22=31.21t+ \frac{1}{2} (32)t^2
16t^2+31.21t-175.22=0
t=2.47 or t=-4.43
Since time cannot be negative, t=2.47 is the time it takes the object to fall to the ground. 

Finally, we can use that time in our first kinematic equation to find the final speed of the object when it hits the ground:
V_{f}=V_{i}+gt
V_{f}=31.21+(32)(2.47)
V_{f}=110.25 ft/s

We can conclude that the speed of the object when it hits the ground is 110.25 ft/s


5 0
3 years ago
A 9-μC positive point charge is located at the origin and a 6 μC positive point charge is located at x = 0.00 m, y = 1.0 m. Find
sukhopar [10]

Answer:

The coordinates of the point is (0,0.55).

Explanation:

Given that,

First charge q_{1}=9\times10^{-6}\ C at origin

Second charge q_{2}=6\times10^{-6}\ C

Second charge at point P = (0,1)

We assume that,

The net electric field between the charges is zero at mid point.

Using formula of electric field

E=\dfrac{kq}{r^2}

0=\dfrac{k\times9\times10^{-6}}{d^2}+\dfrac{k\times6\times10^{-6}}{(1-d)^2}

\dfrac{(1-d)}{d}=\sqrt{\dfrac{6}{9}}

\dfrac{1}{d}=\dfrac{\sqrt{6}}{3}+1

\dfrac{1}{d}=1.82

d=\dfrac{1}{1.82}

d=0.55\ m

Hence, The coordinates of the point is (0,0.55).

3 0
3 years ago
Billy picks up a 40 lb. dumbbell (mass = 18.14 kg). The center of his hand, where the dumbbell is held, is 56 cm (0.56 m) from t
umka21 [38]

Answer:

<h2>Force due to biceps is given as</h2><h2>F = 1991.05 N</h2>

Explanation:

For balancing the force we know that

Torque due to weight hold on his hand = torque due to force applied by biceps

So here we will have

mg \times L = F \times d

so we have

18.14 \times 9.8 \times 0.56 = F \times (0.05)

F = 1991.05 N

8 0
3 years ago
2. A person applies a force of 66 N to a fridge as they push it across the length of a standard tennis court. So far today, the
Lubov Fominskaja [6]

Answer:

P=39.2205\, watt

E=374.948 \,cal

Explanation:

Given that:

  • force applied, F=66\,N
  • displacement, s=23.77\,m (length of a tennis court)
  • time taken for pushing, t = 40 s

Since, work is given by:

W=F.s

W=66\times 23.77

W=1568.82\,J

Now, power is given as:

P=\frac{W}{t}

P=\frac{1568.82}{40}

P=39.2205 \,watt

Calories consumed is:

E= 1568.82\times 0.239

E=374.948\, cal

3 0
3 years ago
Other questions:
  • A satellite is always being pulled by gravity.<br> a. True<br> b. False
    11·1 answer
  • A forklift raises a box weighing 475N from the floor to a height of 18m in 12 seconds. What power is produced by the forklift mo
    9·1 answer
  • The resolving power of electron microscopes is much better than the resolving power of light microscopes because the wavelength
    11·1 answer
  • 1. An object travels 15 m in 3 s. What is the speed of the car?
    14·1 answer
  • Calculate the current flowing through the circuit of a toy car that has a resistance of 20 ohms and is powered by a 3 volt batte
    8·1 answer
  • A ball is thrown vertically upward from the top of a building 80 feet tall with an initial velocity of 64 feet per second. The d
    6·2 answers
  • Which of the following statements correctly describes the movement of water?
    15·2 answers
  • A 68-kg skydiver has a speed of 52 m/s at an altitude of 670 m above the
    5·1 answer
  • A 6.80 $\mu C$ particle moves through a region of space where an electric field of magnitude 1230 N/C points in the positive $x$
    6·1 answer
  • Select the correct answer.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!