<span>These atoms are known as valence atoms.</span>
Answer:
D
Explanation:
it is neon because neon has a higher atomic number so it would have more protons and neutrons and electrons in one atom thus having more particles in one mole
Answer:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations.The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum
Explanation:
The electron is jumped into higher level and back into lower level by absorbing and releasing the energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits. For example if electron jumped from K to L it must absorbed the energy which is equal the energy difference of these two level. The excited electron thus move back to lower energy level which is K by releasing the energy because electron can not stay longer in higher energy level and comes to ground state.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum
We are given with an element Iron, Fe, with a mass of 235.45 g. We are tasked to solve for its corresponding molar mass in mol. We need to find first the molecular weight of Iron, that is
Fe= 55.845 g/mol
With 235.45 g sample, its corresponding mol is
mol Fe= 235.45 g x 1 mol/55.845 = 4.22 mol Fe
Therefore, molar mass of Iron is 4.22 mol