<u>Answer:</u> The increase in pressure is 0.003 atm
<u>Explanation:</u>
To calculate the final pressure, we use the Clausius-Clayperon equation, which is:
![\ln(\frac{P_2}{P_1})=\frac{\Delta H}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= initial pressure which is the pressure at normal boiling point = 1 atm
= final pressure = ?
= Enthalpy change of the reaction = 28.8 kJ/mol = 28800 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = ![801^oC=[801+273]K=1074K](https://tex.z-dn.net/?f=801%5EoC%3D%5B801%2B273%5DK%3D1074K)
= final temperature = ![(801+1.00)^oC=802.00=[802+273]K=1075K](https://tex.z-dn.net/?f=%28801%2B1.00%29%5EoC%3D802.00%3D%5B802%2B273%5DK%3D1075K)
Putting values in above equation, we get:
![\ln(\frac{P_2}{1})=\frac{28800J/mol}{8.314J/mol.K}[\frac{1}{1074}-\frac{1}{1075}]\\\\\ln P_2=3\times 10^{-3}atm\\\\P_2=e^{3\times 10^{-3}}=1.003atm](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7B1%7D%29%3D%5Cfrac%7B28800J%2Fmol%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B1074%7D-%5Cfrac%7B1%7D%7B1075%7D%5D%5C%5C%5C%5C%5Cln%20P_2%3D3%5Ctimes%2010%5E%7B-3%7Datm%5C%5C%5C%5CP_2%3De%5E%7B3%5Ctimes%2010%5E%7B-3%7D%7D%3D1.003atm)
Change in pressure = 
Hence, the increase in pressure is 0.003 atm
Answer:
The answer is definitely D
Explanation:
Answer:
Energy in an ecosystem comes from the Sun.
Explanation:
It is a major source of energy for organisms, plants and the whole ecosystem basically.
Which element requires the least amount of
energy to remove the most loosely held electron
from a gaseous atom in the ground state?
<h3>Answer-</h3><h3>Na</h3>
Answer:
The concentration of the solution will be much lower than 6M
Explanation:
To prepare a solution of a solid, the appropriate mass is taken and accurately weighed in a weighing balance and then made up to mark with distilled water.
From
n= CV
n = number of moles m/M( m= mass of solid, M= molar mass of compound)
C= concentration of substance
V= volume of solution
m=120g
M= 40gmol-1
V=500ml
120/40= C×500/1000
C= 120/40× 1000/500
C=6M
This solution will not be exactly 6M if the student follows the procedure outlined in the question. The actual concentration will be much less than 6M.
This is because, solutions are prepared in a standard volumetric flask. Using a 1000ml beaker, the student must have added more water than the required 500ml thereby making the actual concentration of the solution less than the expected 6M.