According to newton's first law, massive objects have larger inertia than
small objects, which means it takes more force to move bigger things
than smaller
ones.
The relationship between inductance and frequency can be clearly described using the following equation of inductive reactance:
Xl = 2*pi*f*L ; simplifying:
L = Xl / 2*pi*f
Therefore, as what we saw, inductance and frequency are inversely proportional. To add up, when inductance increases the frequency would decrease.
initial velocity (u)=0m/s
final velocity (v)=10m/s
time( t)=5s
acceleration (a)=v-u÷t
acceleration (a)=10-0÷5
acceleration (a)=10÷5
acceleration (a)=2
therefore acceleration (a)=2m/s
X2 = 60
/ 2 / 2
x = 30
Plus or minus square root 60
Answer:
50,000 V/m
Explanation:
The electric field between two charged metal plates is uniform.
The relationship between potential difference and electric field strength for a uniform field is given by the equation

where
is the potential difference
E is the magnitude of the electric field
d is the distance between the plates
In this problem, we have:
is the potential difference between the plates
d = 15 mm = 0.015 m is the distance between the plates
Therefore, rearranging the equation we find the strength of the electric field:
