F= ma; a= F/m
a = 26.4 N/60 kg= 0.44 m/s^2
Answer:
2442.5 Nm
Explanation:
Tension, T = 8.57 x 10^2 N
length of rope, l = 8.17 m
y = 0.524 m
h = 2.99 m
According to diagram
Sin θ = (2.99 - 0.524) / 8.17
Sin θ = 0.3018
θ = 17.6°
So, torque about the base of the tree is
Torque = T x Cos θ x 2.99
Torque = 8.57 x 100 x Cos 17.6° x 2.99
Torque = 2442.5 Nm
thus, the torque is 2442.5 Nm.
The answer is that it is constant. The relation between electric field and electric potential is given as, E= -gradient (V). The E, the partial rate of change of Electric potential, in the equation implies that the V, the partial differential of the potential of the three-dimensional space (assuming it is considered) is constant.
The price of coast to coast membership in united states could lie anywhere between $2,000 to $ 5,000
Unless you're a frequent user of this type of event, i think it would be economically more efficient if you pay the resort on one-day price
Answer:
2.64 x 10⁻⁶T
Explanation:
The magnitude of the magnetic field produced by a long straight wire carrying current is given by Biot-Savart law as follows: "The magnetic field strength is directly proportional to the current on the wire and inversely proportional to the distance from the wire". This can be written mathematically as;
B = (μ₀ I) / (2π r) ----------------(i)
B is magnetic field
I is current through the wire
r is the distance from the wire
μ₀ is the magnetic constant = 4π x 10⁻⁷Hm⁻¹
From the question;
I = 0.7A
r = 0.053m
Substitute these values into equation (i) as follows;
B = (4π x 10⁻⁷ x 0.7) / (2π x 0.053)
B = 2.64 x 10⁻⁶T
Therefore the approximate magnitude of the magnetic field at that location is 2.64 x 10⁻⁶T