Answer:
A: The frequency of the vibration is 1.3329 Hz
B: The total energy of the vibration is 18.39375 J
Explanation:
The force of the man his weight causes the raft to sink, and that causes the water to put a larger upward force on the raft. This extra force is a restoring force, because it is in the opposite direction of the force put on the raft by the man. Then when the man steps off, the restoring force pushes upward on the raft, and thus the raft – water system acts like a spring, with a spring constant found as follows:
k= F/x = ((75 kg) * (9.81 m/s²))/(5*10^-2 m) = 14715 N/m
The frequency of the vibration is determined by the spring constant (k) and the mass of the raft (210kg).
fn = 1/2π * √(k/m) = 1/2π * √(14715 / 210) = <u>1.3329 Hz</u>
<u>The frequency of the vibration is 1.3329 Hz</u>
<u />
<u>b) </u>
Since the gravitational potential energy can be ignored, the total energy will be :
Etot = 1/2 k* A² = 1/2 * (14715 )*(0.05)² = 18.39375 J
<u>The total energy of the vibration is 18.39375 J</u>
That would be position Y, as the northern hemisphere is tilted away from the sun.
Answer:
An object that is moving wants to stay moving in a straight line. It takes an outside force acting upon it to change its direction or cause an acceleration.
Explanation:
<span>Answer:
Spherical Distribution
Feedback: Correct
The stars in the halo component have highly-inclined random orbits that orbit the center of our Galaxy. The stars within the halo would therefore make up a spherical distribution of stars surrounding the center of the Galaxy. In comparison, the disk stars move in elliptical orbits, which are nearly circular and are confined to the disk of the Galaxy. Disk stars therefore have very small inclinations and do not move above or below the plane of the Galactic disk.</span>
This is a question that would have literally have taken two seconds to look up on google but the answer is 1.88 years.