Answer:
375 km
Explanation:
Using the equation, d = vt, we simply plug in the numbers:
v = 150 km/hr
t = 2.5 h
d = (150 km/hr)*(2.5 h)
d = 375 km
I think Gamma Rays
Formula=3 ×× 10^8 m/s
Answer: To isolate the unknown substances, of which only tiny amounts were present, the Curies were the first to use a new method of chemical analysis. They employed various standard (but sometimes demanding) chemical procedures to separate the different substances in pitchblende.
Explanation:
Answer:
3.83×10¯⁴ N
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = +2.4x10¯⁸ C
Charge 2 (q₂) = +1.8x10¯⁶ C
Distance apart (r) = 1.008 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
The magnitude of the electrical force acting between the two charges can be obtained as follow:
F = Kq₁q₂ / r²
F = 9×10⁹ × 2.4x10¯⁸ × 1.8x10¯⁶ / (1.008)²
F = 0.0003888 / 1.016064
F = 3.83×10¯⁴ N
Thus the magnitude of the electrical force acting between the two charges is 3.83×10¯⁴ N
Answer:
2.5 m/s²
Explanation:
You can solve the following equation: F=ma for acceleration.
You'll be left with this:
a=F/m
And then you substitute the force and the doubled mass
a=500N/200kg
a=2.5 m/s²