The answer is C because <span>this movement is caused by the heat in Earth and creates </span>convection currents. <span>Convection currents in the asthenosphere cause movement of Earth's tectonic plates. </span>
During the ball's flight up its velocity and acceleration vectors are in opposite direction and during the ball's flight down its velocity and acceleration vectors are in same direction.
- The velocity vector is always in the direction of motion of the object. So, during the ball's flight up its velocity vector is in the upward direction (90°) and during the ball's flight down its velocity vector is in the downward direction (270°).
- When there is a positive acceleration in the object the acceleration vector is in the direction of motion of the object. When there is a negative acceleration in the object the acceleration vector is in the opposite direction of motion of the object. So, during the ball's flight up its acceleration vector is in the downward direction (270°) and during the ball's flight down its acceleration vector is in the upward direction (90°).
Velocity vector is the rate of change of position of an object. Acceleration vector is the rate of change of velocity of an object.
Therefore, during the ball's flight up its velocity and acceleration vectors are in opposite direction and during the ball's flight down its velocity and acceleration vectors are in same direction.
To know more about velocity and acceleration vectors
brainly.com/question/13492374
#SPJ4
Answer:
Option B
Explanation:
<h3>According to Newton's third law, for every reaction there will be equal and opposite reaction</h3>
Here in this case the force of the club hitting the golf ball will be in one direction and the force acting on club due to golf ball will be in opposite direction and magnitude of this force will be same as the magnitude of the force of the club hitting the golf ball
In this case the action will be the force of the club hitting the golf ball and reaction will be the force acting on club due to golf ball
∴ The club pushes against to golf ball with a force equal and opposite to the force of the golf ball on the club
The impulse given to the ball is equal to the change in its momentum:
J = ∆p = (0.50 kg) (5.6 m/s - 0) = 2.8 kg•m/s
This is also equal to the product of the average force and the time interval ∆t :
J = F(ave) ∆t
so that if F(ave) = 200 N, then
∆t = J / F(ave) = (2.8 kg•m/s) / (200 N) = 0.014 s