From the momentum conservation we know that the initial momentum is equal to the final momentum. The momentum in a singular way can be defined as the product between the mass and the velocity of an object. In the presented system, however, there are two objects, therefore the mass of both and the speed of both, before and after the collision must be taken into account. Mathematically we could describe this as

Here,
= Mass of each object
= Initial velocity of each object
= Final velocity of each object
From here we can realize that it is necessary to use the system on both cars to be able to predict what will happen either with their masses, or their speeds.
The correct answer is C.
Answer:
C
Explanation:
If a pulley system has an efficiency of 74.2%, then only that fraction of the work performed will be useful. 74.2%=0.742. 0.742*200 is about 148J. Hope this helps!
Answer:
a. cosθ b. E.A
Explanation:
a.The electric flux, Φ passing through a given area is directly proportional to the number of electric field , E, the area it passes through A and the cosine of the angle between E and A. So, if we have a surface, S of surface area A and an area vector dA normal to the surface S and electric field lines of field strength E passing through it, the component of the electric field in the direction of the area vector produces the electric flux through the area. If θ the angle between the electric field E and the area vector dA is zero ,that is θ = 0, the flux through the area is maximum. If θ = 90 (perpendicular) the flux is zero. If θ = 180 the flux is negative. Also, as A or E increase or decrease, the electric flux increases or decreases respectively. From our trigonometric functions, we know that 0 ≤ cos θ ≤ 1 for 90 ≤ θ ≤ 0 and -1 ≤ cos θ ≤ 0 for 180 ≤ θ ≤ 90. Since these satisfy the limiting conditions for the values of our electric flux, then cos θ is the required trigonometric function. In the attachment, there is a graph which shows the relationship between electric flux and the angle between the electric field lines and the area. It is a cosine function
b. From above, we have established that our electric flux, Ф = EAcosθ. Since this is the expression for the dot product of two vectors E and A where E is the number of electric field lines passing through the surface and A is the area of the surface and θ the angle between them, we write the electric flux as Ф = E.A
Answer:
The two poles of the bar magnet change positions. The compass needle spins a half circle.
Explanation: