1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ddd [48]
3 years ago
7

Need help pls 18 POINTS IF YOU HELP. On #6 pls.

Mathematics
2 answers:
djverab [1.8K]3 years ago
8 0
It is 35inches so the volume of the stack is 35 in
mezya [45]3 years ago
5 0
The volume is 35 inches. 

hope i helped
You might be interested in
PLZ HELP!!!!!! WILL GIVE BRAINLIEST!!!!!!! Which of the following numbers are greater than -185/100 ? Choose all answers that ap
lesya [120]

Answer:

All of the above.

Step-by-step explanation:

-185/100 is equal to -1.85.

-1.08 is greater because it is closer to 0 than -1.85.

190/100 is equal to 1.9. That's greater because it's in the positives.

-35/20 is equal to -1.75, which is closer to 0 than -1.85.

Therefore, all of the options are greater.

3 0
4 years ago
Read 2 more answers
Please help<br><br> What is 45% of 350?
a_sh-v [17]
We will want to multiply .45 ( the decimal form of 45%) by 350
.45 * 350 = 157.5
5 0
3 years ago
Read 2 more answers
Find the area of this figure
QveST [7]

Answer: A = 89 m²

Step-by-step explanation:

A = BH -½bh

A = 13(8) - ½(13-4-4)(6)

A = 89 m²

8 0
3 years ago
The area of a square floor on a scale drawing is 64 square centimeters, and the scale drawing is 1 centimeter:3 ft. What is the
Oxana [17]

Answer:

Part a) The area of the actual floor is 576\ ft^{2}

Part b) The ratio of the area in the drawing to the actual area is \frac{1}{9}\frac{cm^{2}}{ft^{2}}

Step-by-step explanation:

we know that

The scale drawing is \frac{1}{3}\frac{cm}{ft}

step 1

Find the dimensions of the square on a scale drawing

The area of a square is equal to

A=b^{2}

where

b is the length side of the square

A=64\ cm^{2}

so

64=b^{2}

b=8\ cm

step 2

Find the dimensions of the actual floor

Divide the length of the floor on the drawing by the scale drawing

8/(1/3)=24\ ft

step 3

Find the area of the actual floor

The area of a square is equal to

A=b^{2}

substitute

A=24^{2}=576\ ft^{2}

step 4

Find the ratio of the area in the drawing to the actual area

\frac{64}{576}\frac{cm^{2}}{ft^{2}}

Simplify

Divide by 64 both numerator and denominator

\frac{1}{9}\frac{cm^{2}}{ft^{2}}

3 0
3 years ago
Show all work to identify the asymptotes and zero of the function f(x) = 6x / x^2 - 36
eduard

Answer:

Zero of the function f(x) is at x = 0

Vertical Asymptotes at x = ±6

Horizontal Asymptotes at y = 0

Step-by-step explanation:

<h3>Vertical Asymptotes </h3>

For a given function f(x):

Vertical Asymptotes are obtained at those values of x, where the function f(x) tends to infinity, I.e.,

<em>When</em><em> </em><em>x</em><em> </em><em>approaches</em><em> </em><em>some</em><em> </em><em>constant</em><em> </em><em>value</em><em> </em><em>b</em><em>u</em><em>t</em><em> </em><em>th</em><em>e</em><em> </em><em>curve</em><em> </em><em>moves</em><em> </em><em>towards</em><em> </em><em>infinity</em><em>.</em><em> </em>

  • If f(x) is a fraction, it'll tend to infinity when it's denominator becomes zero.

Vertical Asymptotes of the given function can be obtained by walking thru the following steps:

<u>Step I</u>

(Factorise the numerator and denominator)

\mathsf{ f(x) = \frac{6x}{ {x}^{2} - 36 } }

<em>x</em><em>²</em><em> </em><em>-</em><em> </em><em>36</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>facto</em><em>rised</em><em> </em><em>into</em><em> </em><em>(</em><em>x</em><em> </em><em>+</em><em> </em><em>6</em><em>)</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>6</em><em>)</em>

<em>and</em><em>,</em><em> </em><em>ofcourse</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>write</em><em> </em><em>6</em><em>x</em><em> </em><em>as</em><em> </em><em>6</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>0</em><em>)</em><em> </em>

\mathsf{ f(x) = \frac{6(x - 0)}{ (x + 6)(x - 6) } }

<u>Step</u><u> </u><u>II</u>

(Reduce the fraction to its simplest form by canceling out the common factors)

<em>There aren't any common factors in the numerator and denominator in this case.</em>

<u>Step</u><u> </u><u>III</u>

(Look for the values of x which cause the denominator to be zero)

<em>If</em><em> </em><em>we</em><em> </em><em>put</em><em> </em>x = 6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em>

Also,

<em>If</em><em> </em><em>we</em><em> </em><em>substitute</em><em> </em><em>x</em><em> </em><em>with</em><em> </em> -6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em><em>.</em><em> </em>

The two values of x indicate the two Vertical Asymptotes of the function f(x).

Therefore,

<u>Vertical</u><u> </u><u>Asymptotes</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>function</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u><u>are</u><u>:</u>

\boxed{ \mathsf{x =  \pm6}}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3 /><h3>Horizontal Asymptotes:</h3>

Horizontal Asymptotes are obtained When x tends to infinity and y approaches some constant value.

I'll be using the concept of limits for this.

\mathsf{y = \frac{6x}{ {x}^{2} - 36 }  }

<em>dividing</em><em> </em><em>and</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>x</em><em>²</em><em> </em><em>(</em><em>Yep</em><em>!</em><em> </em><em>so</em><em> </em><em>if</em><em> </em><em>x</em><em> </em><em>becomes</em><em> </em><em>infinity</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em>²</em><em> </em><em>all</em><em> </em><em>such</em><em> </em><em>terms</em><em> </em><em>become</em><em> </em><em>0</em><em>,</em><em> </em><em>'</em><em>cause</em><em> </em><em>1</em><em>/</em><em> </em><em>∞</em><em> </em><em>is</em><em> </em><em>0</em><em>)</em><em> </em>

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6x}{ {x}^{2} } }{  \frac{ {x}^{2} - 36 }{ {x}^{2} }  } ) }

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6}{ x } }{  1-  \frac{36 }{ {x}^{2} }  } ) }

Substitute x with ∞, you get zero/ 1

\implies  \boxed{\mathsf{y = 0}}

So, the horizontal Asymptote of the function is y = 0, that is the x axis

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3>Zeroes of a function:</h3>

The values of x that reduces f(x) to zero are called the zeroes of f(x).

Here, only x = 0 acts as the zero of the function.

[NOTE:

  • For finding <u>Vertical Asymptotes</u><u>,</u>Equate the denominator to 0. And
  • For finding <u>Zeroes</u><u>,</u> Equate the numerator to 0]

__________________

[That's what it's graph looks like. ]

3 0
3 years ago
Other questions:
  • What is the volume of the cone in the picture ifS=5 and R= 3? (V=
    12·1 answer
  • Use Euler's formula to write 3+3i^3 in exponential form.
    13·1 answer
  • What is the measure of DBE?
    5·1 answer
  • Mr. Eanes spent $205.60 at Target. There was a 15% off sale. How much discount did he get?
    15·2 answers
  • Converir 150g a radiones
    5·1 answer
  • Alonzo rented a truck for one day. There was a base fee of $16.95, and there was an additional charge of 94 cents for each mile
    5·1 answer
  • ANSWER THIS QUESTION FOR BRAINLEST AND 10 POINTS
    5·2 answers
  • Negative eight i multiplied by five i
    10·2 answers
  • An angle measures 132° more than the measure of its supplementary angle. What is the measure of each angle?
    5·1 answer
  • Geometry question need help finding the answer.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!