The middle is noble gases the first one is alkaline metals and then the last one is the only one left
<span>Assume
p=735 Torr
V= 7.6L
R=62.4
T= 295
PV-nRT
(735 Torr)(7.60L)= n (62.4Torr-Litres/mole-K)(295K)
0.30346 moles of NH3
Find moles
0.300L solution of 0.300 M HCL = 0.120 moles of HCL
0.30346 moles of NH3 reacts with 0.120 moles of HCL producing 0.120 moles of NH4+ ION, and leaving 0.18346 mole sof NH3 behind
Find molarity
0.120 moles of NH4+/0.300L = 0.400 M NH4+
0.18346 moles of NH3/0.300L = 0.6115 M NH3
NH4OH --> NH4 & OH-
Kb = [NH4+][OH]/[NH4OH]
1.8 e-5=[0.300][OH-]/[0.6115]
[OH-]=1.6e-5
pOH= 4.79
PH=9.21
.</span>
The answer is solution a must have a lower solute concentration than solution b.
That is when water is moving across a membrane from solution a into solution b, then solution a must have a lower solute concentration than solution b.
When solution a have a lower solute concentration than solution b, then water moves across a membrane from solution a into solution b.
"Pent" is five, "ene" means double bonded carbon
Answer:
Se detailed explanation.
Explanation:
Hello,
In this case, since both magnesium and calcium ions are in group IIA, we can review the following similar properties:
- Since both calcium and magnesium are in group IIA they have two valence electrons, it means that the both of them have two electrons at their outer shells.
- They are highly soluble in water when forming ionic bonds with nonmetals such as those belonging to halogens and oxygen's family.
- Calcium has 18 electrons and magnesium 10 which are two less than the total protons (20 and 12 respectively) since the both of them have lost two electrons due their ionized form.
- Their electron configurations are:

It means that the both of them are at the
region since it is the last subshell at which their electrons are.
Best regards.