Answer:
mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g
Explanation:
The partition coefficient of X between ethoxy ethane (ether) and water, K is given by the formula
K = concentration of X in ether/concentration of X in water
Partition coefficient, K(X) between ethoxy ethane and water = 40
Concentration of X in ether = mass(g)/volume(dm³)
Mass of X in ether = m g
Volume of ether = 50/1000 dm³ = 0.05 dm³
Concentration of X in ether = (m/0.05) g/dm³
Concentration of X in water = mass(g)/volume(dm³)
Mass of X in water left after extraction with ether = (5 - m) g
Volume of water = 1 dm³
Concentration of X in water = (5 - m/1) g/dm³
Using K = concentration of X in ether/concentration of X in water;
40 = (m/0.05)/(5 - m)
(m/0.05) = 40 × (5 - m)
(m/0.05) = 200 - 40m
m = 0.05 × (200 - 40m)
m = 10 - 2m
3m = 10
m = 10/3
m = 3.33 g of X
Therefore, mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g
Answer:
To balance a reaction, the amount of reactants must be equal to the amount of products, as stated by the Law of Conservation of Matter. It may help you to keep track of the number of each element in a list as you try to balance. It's not able to be balanced.
Answer:
39.2 L at STP
Explanation:
Convert the grams to moles first by dividing 56.0 by the molar mass of O2 (32.0) then convert to volume by multiplying by 22.4.
= 39.2 L
B, because water is changing its state from solid to liquid (it's fusion in portuguese, don't know in english), so while it's changing, water has 2 states at the same time.