Answer:
5.2 ×10^-4 moles
Explanation:
Equation of reaction:
5C2O4^2- + 2MnO4^- +. 6H^+. ----------> 10CO2. +. 8H2O. + 2Mn^2+
From the information provided in the question:
Volume of potassium permanganate= 34.88ml
Concentration of potassium permanganate= 0.015M
Amount potassium permanganate= 0.015 × 34.88/1000= 5.2 ×10^-4 moles
The partial pressure of oxygen in a sample of air increases if the temperature is increased.
Answer: Option 1
<u>Explanation:
</u>
According to Guy-Lussac's law, at constant volume, pressure exhibited by the gas molecules will be directly proportional to the temperature of the gas molecules. It is also known that pressure of mixture of gas molecules is the sum of partial pressure of each gas molecule in the mixture.
If the temperature increases, the partial pressure and the pressure of the mixture of gas also tend to increase. As it can be seen that at higher altitudes, the low temperature leads to the decrease in oxygen's partial pressure in the air.
So, it can also be concluded that temperature increases the oxygen's partial pressure in air increases.
Answer:
12.5 g of Li are needed in order toproduce 0.60 moles of Li₃N
Explanation:
The reaction is:
6Li(s) + N₂(g) → 2Li₃N(s)
If nitrogen is in excess, the lithium is the limiting reactant.
Ratio is 2:6
2 moles of nitride were produced by 6 moles of Li
Then, 0.6 moles of nitride were produced by (0.6 .6)/ 2 = 1.8 moles of Li
Let's convert the moles to mass → 1.8 mol . 6.94 g/ 1mol = 12.5 g of Li
<span>63.4 g/mol
First, let's determine how many atoms per unit cell in face-centered cubic.
There is 8 corners, each of which has 1 atom, and each of those atoms is shared between 8 other unit cells. So 8*1/8 = 1 atom per unit cell. Additionally, there are 6 faces, each of which has 1 atom that's shared between 2 unit cells. So 6*1/2 = 3 atoms per unit cell. So each unit cell has the mass of 1+3 = 4 atoms.
Since there is 1000 liters per cubic meter, the mass per liter is 8920 kg/1000 = 8.920 kg/L. Now the mass per unit cell is 8920 g * 4.72x10^-26 = 4.21024x10^-22 g per unit cell. The mass per atom is 4.21024x10^-22 g / 4 = 1.05256x10^-22 g/atom, Finally, multiply by Avogadro's number, getting 1.05256x10^-22 g/atom * 6.0221409x10^23 atom/mol = 63.38664625704 g/mol.
Rounding to 3 significant digits gives 63.4 g/mol.</span>
We will use boiling point formula:
ΔT = i Kb m
when ΔT is the temperature change from the pure solvent's boiling point to the boiling point of the solution = 77.85 °C - 76.5 °C = 1.35
and Kb is the boiling point constant =5.03
and m = molality
i = vant's Hoff factor
so by substitution, we can get the molality:
1.35 = 1 * 5.03 * m
∴ m = 0.27
when molality = moles / mass Kg
0.27 = moles / 0.015Kg
∴ moles = 0.00405 moles
∴ The molar mass = mass / moles
= 2 g / 0.00405 moles
= 493.8 g /mol