The coefficient of static friction between the chair and the floor is 0.67
Explanation:
Given:
Weight of the chair = 25kg
Force = 165 N (F_applied)
Force = 127 N (F_max)
To find: Coefficient of static friction
The “coefficient of static friction” between a chair and the floor is defined as the ration of maximum force to the normal force acting on the chair
μ_s=
The F_n is equal to the weight multiplied by its gravity
∴
=mg
Thus the coefficient of static friction changes as
μ_s=
μ_{s} = 
= 0.67
Answer:0.27
Explanation:
Given
One worker Pushes with force 
other Pulls it with a rope of rope 
mass of crate 
both forces are horizontal and crate slides with a constant speed
Both forces are in the same direction so Friction will oppose the forces and will be equal in magnitude of sum of two forces because crate is moving with constant speed i.e. net force is zero on it

where
is the friction force



where
is the coefficient of static friction



Answer:
extrusive I'm pretty sure that's right
Answer:
Gallium
Explanation:
Gallium is one such element used as a do/pant in a p-type semiconductor.
A do/pant is an impurity added to a semi-conductor used to alter its properties. Semi-conductors have a wide range of applications. They will conduct heat and electricity only under certain conditions. This property is highly desirable and find a wide application in electronics.
For p-type conductors, they are best do/ped with elements with 3 valence electrons. These are group 3 elements. From the choices, only gallium belongs to this group.
Other elements given are good do/pants for n-type semiconductors. They have 5 valence electrons.