Answer:
minimum length of a surface crack is 18.3 mm
Explanation:
Given data
plane strain fracture toughness K = 82.4 MPa m1/2
stress σ = 345 MPa
Y = 1
to find out
the minimum length of a surface crack
solution
we will calculate length by this formula
length = 1/π ( K / σ Y)²
put all value
length = 1/π ( K / σ Y)²
length = 1/π ( 82.4
/ 345× 1)²
length = 18.3 mm
minimum length of a surface crack is 18.3 mm
Answer:
A. 1.4 m/s to the left
Explanation:
To solve this problem we must use the principle of conservation of momentum. Let's define the velocity signs according to the direction, if the velocity is to the right, a positive sign will be introduced into the equation, if the velocity is to the left, a negative sign will be introduced into the equation. Two moments will be analyzed in this equation. The moment before the collision and the moment after the collision. The moment before the collision is taken to the left of the equation and the moment after the collision to the right, so we have:

where:
M = momentum [kg*m/s]
M = m*v
where:
m = mass [kg]
v = velocity [m/s]

where:
m1 = mass of the basketball = 0.5 [kg]
v1 = velocity of the basketball before the collision = 5 [m/s]
m2 = mass of the tennis ball = 0.05 [kg]
v2 = velocity of the tennis ball before the collision = - 30 [m/s]
v3 = velocity of the basketball after the collision [m/s]
v4 = velocity of the tennis ball after the collision = 34 [m/s]
Now replacing and solving:
(0.5*5) - (0.05*30) = (0.5*v3) + (0.05*34)
1 - (0.05*34) = 0.5*v3
- 0.7 = 0.5*v
v = - 1.4 [m/s]
The negative sign means that the movement is towards left
Answer:
Rs. 432*10^3 (In kilowatts per hour)
I hope it will be useful.
Answer:

Explanation:
Torque,
is given by
where F is force and r is perpendicular distance
where
is the angle of inclination
Torque,
can also be found by
where I is moment of inertia and a is angular acceleration
Therefore, Fr=Ia and F=mg where m is mass and g is acceleration due to gravity
Making a the subject,
and already I is given as
hence
Taking g as 9.81,
is given as 37 and L is 1.2
Answer:
Current = 10 Amperes.
Explanation:
Given the following dat;
Quantity of charge, Q = 36 kilocoulombs (KC) = 36 * 1000 = 36000C
Time = 1 hour to seconds = 60*60 = 3600 seconds
To find the current;
Quantity of charge = current * time
Substituting in the equation
36000 = current * 3600
Current = 36000/3600
Current = 10 Amperes.