All four values are in 3 sig. fig.
<h3>Explanation</h3>
(a)
.
(b)
Sum of the final charge on the two capacitors should be the same as the sum of the initial charge. Voltage of the two capacitors should be the same. That is:
;
;
.
(c)
.
.
(d)
Initial energy of the system, which is the same as the initial energy in the
capacitor:
.
Change in energy:
.
The purpose of the machine is to leverage its mechanical advantage such that the force it outputs to move the heavy object is greater than the force required for you to input.
But there's no such thing as a free lunch! When you apply the conservation of energy, the work the machine does on the object will always be equal to (in an ideal machine) or less than the work you input to the machine.
This means that you will apply a lesser force for a longer distance so that the machine can supply a greater force on the object to push it a smaller distance. That is the trade-off of using the machine: it enables you to use a smaller force but at the cost of having to apply that smaller force for a greater distance.
The answer is: The work input required will equal the work output.
Answer:
Work, W = 846.72 Joules
Explanation:
Given that,
Mass of the watermelon, m = 4.8 kg
It is dropped from rest from the roof of 18 m building. We need to find the work done by the gravity on the watermelon from the roof to the ground. It is same as gravitational potential energy i.e.
W = mgh
W = 846.72 Joules
So, the work done by the gravity on the watermelon is 846.72 Joules. Hence, this is the required solution.
Protons, neutrons, and electrons<span> are the three main subatomic particles found in an atom. Protons have a</span>positive<span> (+) </span>charge<span>. An easy way to remember this is to remember that both proton and </span>positive<span> start with the</span>letter<span> "</span>P<span>." Neutrons have no electrical </span>charge<span>.</span>
Answer:
Velocity, v = 0.239 m/s
Explanation:
Given that,
The distance between two consecutive nodes of a standing wave is 20.9 cm = 0.209 m
The hand generating the pulses moves up and down through a complete cycle 2.57 times every 4.47 s.
For a standing wave, the distance between two consecutive nodes is equal to half of the wavelength.
![\dfrac{\lambda}{2}=0.209\ m\\\\\lambda=0.418\ m](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Clambda%7D%7B2%7D%3D0.209%5C%20m%5C%5C%5C%5C%5Clambda%3D0.418%5C%20m)
Frequency is number of cycles per unit time.
![f=\dfrac{2.57}{4.47}\\\\f=0.574\ Hz](https://tex.z-dn.net/?f=f%3D%5Cdfrac%7B2.57%7D%7B4.47%7D%5C%5C%5C%5Cf%3D0.574%5C%20Hz)
Now we can find the velocity of the wave.
Velocity = frequency × wavelength
v = 0.574 × 0.418
v = 0.239 m/s
So, the velocity of the wave is 0.239 m/s.