Answer:
Explanation:
The direction of the acceleration is in the same direction as the net force causing it. F = ma is actually a vector equation in which f and a are both vectors and m is a scalar constant.
Answer:
0.98kW
Explanation:
The conservation of energy is given by the following equation,


Where
Mass flow
Specific Enthalpy (IN)
Specific Enthalpy (OUT)
Gravity
Heigth state (In, OUT)
Velocity (In, Out)
Our values are given by,




For this problem we know that as pressure, temperature as velocity remains constant, then


Then we have that our equation now is,



Answer:
16.5 kwh and 59400 kJ.
Explanation:
kWh is a measure of energy that is equivalent to the power in kw times the number of hours the device worked.
In this case, it would be equal to:

1 kw also means 1kj of energy spent per second. With this, we calculate the amount of energy in kJ spent by the resistance:

true
Explanation:
this is because melting point and boiling point decreases down the group because they are held together by attractions between positive nuclei and delocalised electrons
In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.