Answer:
54%
Explanation:
So, we have that the "magnitude of its displacement from equilibrium is greater than (0.66)A—''. Thus, the first step to take in answering this question is to write out the equation showing the displacement in simple harmonic motion which is = A cos w×t.
Therefore, we will have two instances t the displacement that is to say at a point 2π/w - a2 and the second point at a = a2.
Let us say that 2π/w = A, then, we have that a = A cos ^-1 (0.66)/2π. Also, we have that a2 = A/2 - A cos^- (0.66) / 2π.
The next thing to do is to calculate or determine the total length of of the required time. Thus, the total length is given as:
2a1 + ( A - 2a2) = 2A{ cos^-1 (0.66)}/ π.
Therefore, the total percentage of the period does the mass lie in these regions = 100 × {2a1 + ( A - 2a2) }/A = 2 { cos^-1 (0.66)}/ π × 100 = 54%.
Thus, the total percentage of the period does the mass lie in these regions = 54%.
Complete question:
A light bulb emits light that travels uniformly in all directions. Detailed measurements show that at a distance of 56 m from the bulb, the amplitude of the electric field is 3.78 V/m. What is the average intensity of the light?
Answer:
The average intensity of the light is 0.02 W/m²
Explanation:
Given;
Amplitude of the electric field, E₀ = 3.78 V/m
The average intensity of the light is calculated as follows;

where;
is the average intensity of the light
c is speed of light = 3 x 10⁸ m/s

Therefore, the average intensity of the light is 0.02 W/m²
The moon's gravity, combined with the waltz of Earth and the moon around their center of mass, forces the oceans into an oval shape, with two simultaneous high tides. ... If the moon were half its mass, then the ocean tides would have been correspondingly smaller and imparted less energy to it.
Answer:
3.1 m/s²
Explanation:
Apply Newton's second law:
∑F = ma
40 N = (13 kg) a
a ≈ 3.1 m/s²
Answer:
10 seconds
Explanation:
If the height is modeled by the function
, then the seconds it takes to reach the water (when the height equals 0) is modeled by the following.
