Answer:
a=positive
b=0
c=positive
d=negative
Explanation:
a=acceleration depends on the speed and time. if the speed and time are increasing at the same rate, the acceleration value will be positive as the vehicle is speeding up.
b=the speed and time are not increasing, therefore the vehicle is either stationary or travelling at a steady pace.
c=same explanation as a
d=the speed and time are not increasing at the same rate as the speed is decreasing. this means that the car is slowing down
Answer:
B is the best answer for the question
Answer:
x = - 1.4
Explanation:
-5=10x+2-5x (subtract 5x from both sides)
-5=5x+2 (simplify)
-5-2=5x (subtract 2 from both sides)
-7=5x (simplify)
x=-7/5 (divide both sides by 5)
x=-1.4 (simplify)
i would really appreciate getting a brainliest. anyways i hope this helped and have a great rest of your day/night!! :)
Answer:
The resistance of the inductor at resonance is 258.76 ohms.
Explanation:
Given;
resistance of the resistor, R = 305 ohm
capacitance of the capacitor, C = 1.1 μF = 1.1 x 10⁻⁶ F
inductance of the inductor, L = 42 mH = 42 x 10⁻³ H = 0.042 H
At resonance the inductive reactance is equal to capacitive reactance.

Where;
F₀ is the resonance frequency

The inductive reactance is given by;

Therefore, the resistance of the inductor at resonance is 258.76 ohms.
Answer:
Load
Explanation:
A normal power supply can deliver up to certain amount of power to a load. The output power can be calculated multiplying Voltage (V) x Current (A). It happens that after a certain period of time, the power source's main components begin to wear, thus losing its ability to deliver its nominal power. Normally, when no load its connected to the source, you will get the operating Voltage, but when the load demands power, the ability to deliver power to it may fail to reach nominal levels. When connected, there may be voltage drops (thus, less power output) causing malfunctions turning it into a non-operative power supply.