Answer:
<h3>The answer is 0.47 kg</h3>
Explanation:
The mass of the object given it's momentum and velocity can be found by using the formula

where
p is the momentum
v is the velocity
We have

We have the final answer as
<h3>0.47 kg</h3>
Hope this helps you
Answer:
9266 feet
Explanation:
with Earth's gravity and long it fell that's as good as it gets if there was no other factors like wind mass weight but your welcome
Answer:
Answer:B
Explanation:
Because it all stayed consistant
Answer:
8.97 Watt
Explanation:
Resistance, R = 20 ohm
Inductance, L = 10 mH
V(t) = 20 Cos (1000 t + 45°)
Compare with the standard equation
V(t) = Vo Cos(ωt + Ф)
Ф = 45°
ω = 1000 rad/s
Vo = 20 V
Inductive reactance, XL = ωL = 1000 x 0.01 = 10 ohm
impedance is Z.


Z = 22.36 ohm



Apparent power is given by
P = Vrms x Irms
P = 14.144 x 0.634
P = 8.97 Watt