Answer:
Vc = 2.41 v
Explanation:
voltage (v) = 16 v
find the voltage between the ends of the copper rods .
applying the voltage divider theorem
Vc = V x (
)
where
- Rc = resistance of copper =
(l = length , a = area, ρ = resistivity of copper)
- Ri = resistance of iron =
(l = length , a = area, ρ₀ = resistivity of copper)
Vc = V x (
)
Vc = V x (
)
Vc = V x (
)
where
- ρ = resistivity of copper = 1.72 x 10^{-8} ohm.meter
- ρ₀ = resistivity of iron = 9.71 x 10^{-8} ohm.meter
Vc = 16 x (
)
Vc = 2.41 v
The one that both benefits each other is the one I think it's mutalistic
Answer:
Explanation:
y_1 = (3 mm) sin(x - 3t)
comparing it with standard wave equation
y = A sin( ωt-kx )
we see
ω = -3 , k = -1
velocity = ω / k
= 3
y_2 = (6 mm) sin(2x - t)
we see
ω = -1 , k = -2
velocity = ω / k
= .5
y_3 = (1 mm) sin(4x - t)
we see
ω = -1 , k = -4
velocity = ω / k
= .25
y_4 = (2 mm) sin(x - 2t)
we see
ω = -2 , k = -1
velocity = ω / k
= 2
So greatest velocity to lowest velocity
y_1 = (3 mm) sin(x - 3t) , y_4 = (2 mm) sin(x - 2t) ,y_2 = (6 mm) sin(2x - t) , y_3 = (1 mm) sin(4x - t)
b )
Given the mass per unit length of wire the same , velocity is proportional to
√ T , where T is tension
so in respect of tension in the wire same order will exist for highest to lowest tension .
Answer:
at rate the current change is 6.75 A / sec
Explanation:
given data
inductance L = 17 H
current I = 1.8 A
emf e = 70 V
to find out
At what rate must the current be changed
solution
we will apply here emf formula that is
emf = inductance (di/dt)
so here (di/dt) will be
di/dt = emf / inductance .......................1
put value of emf and inductance in equation 1 we get rate
di/dt = 81 / 12
di/dt = 6.75 A / sec
so at rate the current change is 6.75 A / sec