1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadya68 [22]
3 years ago
10

Two runners start a race. After 2 seconds, they both have the same velocity. If they both started at the same time, how do their

average accelerations compare?
Physics
2 answers:
djyliett [7]3 years ago
7 0

let each runner starts from rest

v₀ = initial velocity of each runner = 0 m/s

t = time of travel = 2 sec =

a = average acceleration

average acceleration is given as

a = (v - v₀)/t

inserting the values

a =  (v - 0)/t

a = v/t

since each runner gains equal amount of speed in given time interval of "t". hence the average acceleration of each runner is same.

arsen [322]3 years ago
3 0

Answer:

Two runners start a race. After 2 seconds, they both have the same velocity.  they both started at the same time, how do their average velocities compare? They have the same acceleration rate.

Explanation:

You might be interested in
Half life of a given sample of radium is 22 years the sample will reduce to 25% of its original value after
makkiz [27]

Answer:

44 years

Explanation:

Use half life equation:

A = A₀ (½)^(t / T)

where A is the final amount,

A₀ is the initial amount,

t is time,

and T is the half life.

0.25 A₀ = A₀ (½)^(t / 22)

0.25 = (½)^(t / 22)

t / 22 = 2

t = 44

3 0
3 years ago
ListenA bicycle and its rider have a combined mass of 80. kilograms and a speed of 6.0 meters per second. What is the magnitude
Setler [38]

Answer:

a) 1.2\times 10^2\ N

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

a = Acceleration

v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow a=\frac{0-6}{4}\\\Rightarrow a=-1.5\ m/s^2

The acceleration of the bicycle and rider is -1.5 m/s²

Force

F=ma\\\Rightarrow F=80\times -1.5\\\Rightarrow F=-120\ N=-1.2\times 10^2\ N

The magnitude of the average force needed to bring the bicycle and its rider to a stop is 1.2\times 10^2\ N

3 0
3 years ago
Please help I don't know how to answer these questions!
Yuki888 [10]

1) The potential energy is the most at the highest position and the least at the equilibrium position

2) The kinetic energy is the most at the equilibrium position and  the least at the highest position

Explanation:

1)

The potential energy of an object is the energy possessed by the object due to its position in a gravitational field; mathematically, it is given by

PE=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the height of the object relative to the ground

For the pendulum in this problem, m is the mass of the bob, and h is the height of the above relative to the ground. We see from the formula that the potential energy is directly proportional to the height:

PE\propto h

This means that:

  • The potential energy is the most when the bob is at the highest position
  • The potential energy is the least when the bob is at the equilibrium position,  which is the lowest position

2)

We can solve this part by applying the law of conservation of energy: in fact, the total mechanical energy of the pendulum (sum of potential and kinetic energy) is constant at any time during the motion,

E=KE+PE=const.

where KE is the kinetic energy.

From the equation above, we observe that:

  • When PE is maximum, KE must be at minimum
  • When PE is minimum, KE must be maximum

Therefore, this implies that:

  • The kinetic energy is the most when the potential energy is the least, i.e. at the equilibrium position
  • The kinetic energy is the least when the potential energy is the most, i.e. at the highest position

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

6 0
3 years ago
Determine the focal length of a plano-concave lens (refractive index n =1.5) with 24 cm radius of curvature on its curve surface
tatyana61 [14]

Answer:

Option 3: -48 cm

Explanation:

We are given:

refractive index; n = 1.5

radius of curvature; r2 = 24 cm

Formula for the focal length is given as;

1/f = (n - 1) × [(1/r1) - (1/r2)]

As r1 tends to infinity, 1/r1 = 0

Thus,we now have;

1/f = (n - 1) × (-1/r2)

Plugging in the relevant values;

1/f = (1.5 - 1) × (-1/24)

1/f = -0.02083333333

f = -1/0.02083333333

f = -48 cm

3 0
2 years ago
Help please <br> hhjshwjsjejjenrhrhfhhfheisiw
DanielleElmas [232]

Answer:

A

Explanation:

4 0
3 years ago
Other questions:
  • When was the first ozone hole discovered ​
    5·1 answer
  • Graphically determine the resultant of the following three vector displacements: (1) 34 m, 25º north of east; (2) 48 m, 33° east
    7·1 answer
  • A book with a mass of 1kg is dropped from a height of 3m . What is the potential energy of th book when it reaches the floor?​
    15·1 answer
  • On an amusement park ride, riders stand inside a cylinder of radius 8.0 m. At first the cylinder rotates horizontally. Then afte
    15·1 answer
  • In a downtown office building, you notice each of the four sections of a rotating door has a mass of 75 kg. What is the width, i
    11·1 answer
  • 100 points
    11·1 answer
  • 1. A 2,000-turn solenoid is 65 cm long and has cross-sectional area 30 cm2. What rate of change of current will produce a 600 Vo
    9·1 answer
  • I need help with this ASAP!!!
    10·1 answer
  • 4.
    13·1 answer
  • An object of mass M is placed on a disk that can rotate. One end of a string is tied to the object while the other end of the st
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!