<u>Answer:</u> The number of
ions dissociated are
<u>Explanation:</u>
We are given:
pH = 2.07
Calculating the value of pOH by using equation, we get:

To calculate hydroxide ion concentration, we use the equation to calculate pOH of the solution, which is:
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
We are given:
pOH = 11.93
Putting values in above equation, we get:
![11.93=-\log[OH^-]](https://tex.z-dn.net/?f=11.93%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=10^{-11.93}=1.17\times 10^{-12}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-11.93%7D%3D1.17%5Ctimes%2010%5E%7B-12%7DM)
To calculate the number of moles for given molarity, we use the equation:

Molarity of solution = 
Volume of solution = 1243 mL = 1.243 L (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

According to mole concept:
1 mole of a compound contains
number of particles
So,
number of
will contain =
number of ions
Hence, the number of
ions dissociated are