For this problem, you should be able to differentiate the variables presented from each other in order to substitute them in their corresponding places in the formula or formulas to be utilized in this problem. As for this problem, the only formula to be utilized would be the formula for power which is force multiplied to distance over time or simply have force multiplied to speed since speed is equal to distance over time.
The formula would like this:
Power = force x distance / time Power = force x speed
P = 490 N x 2 m / 10 s P = 490 N x (2 m / 10 s)
P = 980 N m / 10 s P = 490 N x 0.2 m / s
P = 98 W P = 98 W
So the average power required to lift a 490-newton object a vertical distance of 2.0 meters in 10 seconds would be 98 watts.
The fundamental force underlying all chemical reactions is D) electrical
Answer:
B 5.0 A
.
Explanation:
Hello.
In this case, since we know the charge (1200 C), time (4 min =240 s) and resistance (10Ω) which is actually not needed here, we compute the current as follows:

Then, for the given data, we obtain:

Therefore, answer is B 5.0 A
.
Best regards!
Answer:
D
Explanation:
Now we know that Force is the rate of change of momentum meaning
F= mv/t
But
mv/t = Ke
v/t = ke/m
a= ke/m
Where a is acceleration
K is constant of proportionality of tension on a spring
e is the extension substended by a string.
From the formula of acceleration we can see that as mass decreases acceleration increases so we can see that m = 1
We would have a maximum value of acceleration.
For example, a trade secret may<span> be a confidential device, pattern, </span>information<span>, or </span>chemical<span> make-up.</span>Chemical industry<span> trade secrets are generally formulas, process data, or a "specific </span>chemical<span> identity." The latter is the type of trade secret </span>information<span> referred to in the Hazard Communication Standard. The term includes</span>